From 959a48d0eac0321948c9f3d1707ba22c100e92d5 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:54 +0530 Subject: PCI: endpoint: Make *_get_first_free_bar() take into account 64 bit BAR pci_epc_get_first_free_bar() uses only "reserved_bar" member in epc_features to get the first unreserved BAR. However if the reserved BAR is also a 64-bit BAR, then the next BAR shouldn't be returned (since 64-bit BAR uses two BARs). Make pci_epc_get_first_free_bar() take into account 64 bit BAR while returning the first free unreserved BAR. Link: https://lore.kernel.org/r/20210201195809.7342-3-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-epc-core.c | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c index cadd3db0cbb0..25e57672e1a1 100644 --- a/drivers/pci/endpoint/pci-epc-core.c +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -93,12 +93,20 @@ EXPORT_SYMBOL_GPL(pci_epc_get); unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) { - int free_bar; + unsigned long free_bar; if (!epc_features) return 0; - free_bar = ffz(epc_features->reserved_bar); + /* Find if the reserved BAR is also a 64-bit BAR */ + free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; + + /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */ + free_bar <<= 1; + free_bar |= epc_features->reserved_bar; + + /* Now find the free BAR */ + free_bar = ffz(free_bar); if (free_bar > 5) return 0; -- cgit v1.2.3 From fa8fef0e104a23efe568b835d9e7e188d1d97610 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:55 +0530 Subject: PCI: endpoint: Add helper API to get the 'next' unreserved BAR Add an API to get the next unreserved BAR starting from a given BAR number that can be used by the endpoint function. Link: https://lore.kernel.org/r/20210201195809.7342-4-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-epc-core.c | 26 ++++++++++++++++++++++---- include/linux/pci-epc.h | 2 ++ 2 files changed, 24 insertions(+), 4 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c index 25e57672e1a1..1afe5d9afb0d 100644 --- a/drivers/pci/endpoint/pci-epc-core.c +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -87,17 +87,36 @@ EXPORT_SYMBOL_GPL(pci_epc_get); * pci_epc_get_first_free_bar() - helper to get first unreserved BAR * @epc_features: pci_epc_features structure that holds the reserved bar bitmap * - * Invoke to get the first unreserved BAR that can be used for endpoint + * Invoke to get the first unreserved BAR that can be used by the endpoint * function. For any incorrect value in reserved_bar return '0'. */ unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) +{ + return pci_epc_get_next_free_bar(epc_features, BAR_0); +} +EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); + +/** + * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar + * @epc_features: pci_epc_features structure that holds the reserved bar bitmap + * @bar: the starting BAR number from where unreserved BAR should be searched + * + * Invoke to get the next unreserved BAR starting from @bar that can be used + * for endpoint function. For any incorrect value in reserved_bar return '0'. + */ +unsigned int pci_epc_get_next_free_bar(const struct pci_epc_features + *epc_features, enum pci_barno bar) { unsigned long free_bar; if (!epc_features) return 0; + /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ + if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) + bar++; + /* Find if the reserved BAR is also a 64-bit BAR */ free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; @@ -105,14 +124,13 @@ unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features free_bar <<= 1; free_bar |= epc_features->reserved_bar; - /* Now find the free BAR */ - free_bar = ffz(free_bar); + free_bar = find_next_zero_bit(&free_bar, 6, bar); if (free_bar > 5) return 0; return free_bar; } -EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); +EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); /** * pci_epc_get_features() - get the features supported by EPC diff --git a/include/linux/pci-epc.h b/include/linux/pci-epc.h index cc66bec8be90..cfe9b427e6b7 100644 --- a/include/linux/pci-epc.h +++ b/include/linux/pci-epc.h @@ -203,6 +203,8 @@ const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, u8 func_no); unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features); +unsigned int pci_epc_get_next_free_bar(const struct pci_epc_features + *epc_features, enum pci_barno bar); struct pci_epc *pci_epc_get(const char *epc_name); void pci_epc_put(struct pci_epc *epc); -- cgit v1.2.3 From 0e27aeccfa3d1bab7c6a29fb8e6fcedbad7b09a8 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:56 +0530 Subject: PCI: endpoint: Make *_free_bar() to return error codes on failure Modify pci_epc_get_next_free_bar() and pci_epc_get_first_free_bar() to return error values if there are no free BARs available. Link: https://lore.kernel.org/r/20210201195809.7342-5-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/functions/pci-epf-test.c | 2 ++ drivers/pci/endpoint/pci-epc-core.c | 12 ++++++------ include/linux/pci-epc.h | 8 ++++---- include/linux/pci-epf.h | 1 + 4 files changed, 13 insertions(+), 10 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/functions/pci-epf-test.c b/drivers/pci/endpoint/functions/pci-epf-test.c index e4e51d884553..7a1f3abfde48 100644 --- a/drivers/pci/endpoint/functions/pci-epf-test.c +++ b/drivers/pci/endpoint/functions/pci-epf-test.c @@ -834,6 +834,8 @@ static int pci_epf_test_bind(struct pci_epf *epf) linkup_notifier = epc_features->linkup_notifier; core_init_notifier = epc_features->core_init_notifier; test_reg_bar = pci_epc_get_first_free_bar(epc_features); + if (test_reg_bar < 0) + return -EINVAL; pci_epf_configure_bar(epf, epc_features); } diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c index 1afe5d9afb0d..ea7e7465ce7a 100644 --- a/drivers/pci/endpoint/pci-epc-core.c +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -90,8 +90,8 @@ EXPORT_SYMBOL_GPL(pci_epc_get); * Invoke to get the first unreserved BAR that can be used by the endpoint * function. For any incorrect value in reserved_bar return '0'. */ -unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features - *epc_features) +enum pci_barno +pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) { return pci_epc_get_next_free_bar(epc_features, BAR_0); } @@ -105,13 +105,13 @@ EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); * Invoke to get the next unreserved BAR starting from @bar that can be used * for endpoint function. For any incorrect value in reserved_bar return '0'. */ -unsigned int pci_epc_get_next_free_bar(const struct pci_epc_features - *epc_features, enum pci_barno bar) +enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features + *epc_features, enum pci_barno bar) { unsigned long free_bar; if (!epc_features) - return 0; + return BAR_0; /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) @@ -126,7 +126,7 @@ unsigned int pci_epc_get_next_free_bar(const struct pci_epc_features free_bar = find_next_zero_bit(&free_bar, 6, bar); if (free_bar > 5) - return 0; + return NO_BAR; return free_bar; } diff --git a/include/linux/pci-epc.h b/include/linux/pci-epc.h index cfe9b427e6b7..88d311bad984 100644 --- a/include/linux/pci-epc.h +++ b/include/linux/pci-epc.h @@ -201,10 +201,10 @@ int pci_epc_start(struct pci_epc *epc); void pci_epc_stop(struct pci_epc *epc); const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, u8 func_no); -unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features - *epc_features); -unsigned int pci_epc_get_next_free_bar(const struct pci_epc_features - *epc_features, enum pci_barno bar); +enum pci_barno +pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features); +enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features + *epc_features, enum pci_barno bar); struct pci_epc *pci_epc_get(const char *epc_name); void pci_epc_put(struct pci_epc *epc); diff --git a/include/linux/pci-epf.h b/include/linux/pci-epf.h index 6644ff3b0702..fa3aca43eb19 100644 --- a/include/linux/pci-epf.h +++ b/include/linux/pci-epf.h @@ -21,6 +21,7 @@ enum pci_notify_event { }; enum pci_barno { + NO_BAR = -1, BAR_0, BAR_1, BAR_2, -- cgit v1.2.3 From 7e5a51ebb321537c4209cdd0c54c4c19b3ef960d Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:57 +0530 Subject: PCI: endpoint: Remove unused pci_epf_match_device() Remove unused pci_epf_match_device() function added in pci-epf-core.c Link: https://lore.kernel.org/r/20210201195809.7342-6-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-epf-core.c | 16 ---------------- include/linux/pci-epf.h | 2 -- 2 files changed, 18 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-epf-core.c b/drivers/pci/endpoint/pci-epf-core.c index c977cf9dce56..e44a317a2a2a 100644 --- a/drivers/pci/endpoint/pci-epf-core.c +++ b/drivers/pci/endpoint/pci-epf-core.c @@ -282,22 +282,6 @@ struct pci_epf *pci_epf_create(const char *name) } EXPORT_SYMBOL_GPL(pci_epf_create); -const struct pci_epf_device_id * -pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf) -{ - if (!id || !epf) - return NULL; - - while (*id->name) { - if (strcmp(epf->name, id->name) == 0) - return id; - id++; - } - - return NULL; -} -EXPORT_SYMBOL_GPL(pci_epf_match_device); - static void pci_epf_dev_release(struct device *dev) { struct pci_epf *epf = to_pci_epf(dev); diff --git a/include/linux/pci-epf.h b/include/linux/pci-epf.h index fa3aca43eb19..f373a134ac04 100644 --- a/include/linux/pci-epf.h +++ b/include/linux/pci-epf.h @@ -165,8 +165,6 @@ static inline void *epf_get_drvdata(struct pci_epf *epf) return dev_get_drvdata(&epf->dev); } -const struct pci_epf_device_id * -pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf); struct pci_epf *pci_epf_create(const char *name); void pci_epf_destroy(struct pci_epf *epf); int __pci_epf_register_driver(struct pci_epf_driver *driver, -- cgit v1.2.3 From 63840ff5322373d665b2b9c59cd64233d5f0691e Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:58 +0530 Subject: PCI: endpoint: Add support to associate secondary EPC with EPF In the case of standard endpoint functions, only one endpoint controller (EPC) will be associated with an endpoint function (EPF). However for providing NTB (non transparent bridge) functionality, two EPCs should be associated with a single EPF. Add support to associate secondary EPC with EPF. This is in preparation for adding NTB endpoint function driver. Link: https://lore.kernel.org/r/20210201195809.7342-7-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/functions/pci-epf-test.c | 11 ++++-- drivers/pci/endpoint/pci-ep-cfs.c | 6 +-- drivers/pci/endpoint/pci-epc-core.c | 47 ++++++++++++++++------ drivers/pci/endpoint/pci-epf-core.c | 57 +++++++++++++++++++-------- include/linux/pci-epc.h | 25 +++++++++++- include/linux/pci-epf.h | 17 +++++++- 6 files changed, 125 insertions(+), 38 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/functions/pci-epf-test.c b/drivers/pci/endpoint/functions/pci-epf-test.c index 7a1f3abfde48..c0ac4e9cbe72 100644 --- a/drivers/pci/endpoint/functions/pci-epf-test.c +++ b/drivers/pci/endpoint/functions/pci-epf-test.c @@ -619,7 +619,8 @@ static void pci_epf_test_unbind(struct pci_epf *epf) if (epf_test->reg[bar]) { pci_epc_clear_bar(epc, epf->func_no, epf_bar); - pci_epf_free_space(epf, epf_test->reg[bar], bar); + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); } } } @@ -651,7 +652,8 @@ static int pci_epf_test_set_bar(struct pci_epf *epf) ret = pci_epc_set_bar(epc, epf->func_no, epf_bar); if (ret) { - pci_epf_free_space(epf, epf_test->reg[bar], bar); + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); dev_err(dev, "Failed to set BAR%d\n", bar); if (bar == test_reg_bar) return ret; @@ -771,7 +773,7 @@ static int pci_epf_test_alloc_space(struct pci_epf *epf) } base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, - epc_features->align); + epc_features->align, PRIMARY_INTERFACE); if (!base) { dev_err(dev, "Failed to allocated register space\n"); return -ENOMEM; @@ -789,7 +791,8 @@ static int pci_epf_test_alloc_space(struct pci_epf *epf) continue; base = pci_epf_alloc_space(epf, bar_size[bar], bar, - epc_features->align); + epc_features->align, + PRIMARY_INTERFACE); if (!base) dev_err(dev, "Failed to allocate space for BAR%d\n", bar); diff --git a/drivers/pci/endpoint/pci-ep-cfs.c b/drivers/pci/endpoint/pci-ep-cfs.c index 3710adf51912..6ca9e2f92460 100644 --- a/drivers/pci/endpoint/pci-ep-cfs.c +++ b/drivers/pci/endpoint/pci-ep-cfs.c @@ -94,13 +94,13 @@ static int pci_epc_epf_link(struct config_item *epc_item, struct pci_epc *epc = epc_group->epc; struct pci_epf *epf = epf_group->epf; - ret = pci_epc_add_epf(epc, epf); + ret = pci_epc_add_epf(epc, epf, PRIMARY_INTERFACE); if (ret) return ret; ret = pci_epf_bind(epf); if (ret) { - pci_epc_remove_epf(epc, epf); + pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE); return ret; } @@ -120,7 +120,7 @@ static void pci_epc_epf_unlink(struct config_item *epc_item, epc = epc_group->epc; epf = epf_group->epf; pci_epf_unbind(epf); - pci_epc_remove_epf(epc, epf); + pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE); } static struct configfs_item_operations pci_epc_item_ops = { diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c index ea7e7465ce7a..3693eca5b030 100644 --- a/drivers/pci/endpoint/pci-epc-core.c +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -493,21 +493,28 @@ EXPORT_SYMBOL_GPL(pci_epc_write_header); * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller * @epc: the EPC device to which the endpoint function should be added * @epf: the endpoint function to be added + * @type: Identifies if the EPC is connected to the primary or secondary + * interface of EPF * * A PCI endpoint device can have one or more functions. In the case of PCIe, * the specification allows up to 8 PCIe endpoint functions. Invoke * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. */ -int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf) +int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, + enum pci_epc_interface_type type) { + struct list_head *list; u32 func_no; int ret = 0; - if (epf->epc) + if (IS_ERR_OR_NULL(epc)) + return -EINVAL; + + if (type == PRIMARY_INTERFACE && epf->epc) return -EBUSY; - if (IS_ERR(epc)) - return -EINVAL; + if (type == SECONDARY_INTERFACE && epf->sec_epc) + return -EBUSY; mutex_lock(&epc->lock); func_no = find_first_zero_bit(&epc->function_num_map, @@ -524,11 +531,17 @@ int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf) } set_bit(func_no, &epc->function_num_map); - epf->func_no = func_no; - epf->epc = epc; - - list_add_tail(&epf->list, &epc->pci_epf); + if (type == PRIMARY_INTERFACE) { + epf->func_no = func_no; + epf->epc = epc; + list = &epf->list; + } else { + epf->sec_epc_func_no = func_no; + epf->sec_epc = epc; + list = &epf->sec_epc_list; + } + list_add_tail(list, &epc->pci_epf); ret: mutex_unlock(&epc->lock); @@ -543,14 +556,26 @@ EXPORT_SYMBOL_GPL(pci_epc_add_epf); * * Invoke to remove PCI endpoint function from the endpoint controller. */ -void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf) +void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, + enum pci_epc_interface_type type) { + struct list_head *list; + u32 func_no = 0; + if (!epc || IS_ERR(epc) || !epf) return; + if (type == PRIMARY_INTERFACE) { + func_no = epf->func_no; + list = &epf->list; + } else { + func_no = epf->sec_epc_func_no; + list = &epf->sec_epc_list; + } + mutex_lock(&epc->lock); - clear_bit(epf->func_no, &epc->function_num_map); - list_del(&epf->list); + clear_bit(func_no, &epc->function_num_map); + list_del(list); epf->epc = NULL; mutex_unlock(&epc->lock); } diff --git a/drivers/pci/endpoint/pci-epf-core.c b/drivers/pci/endpoint/pci-epf-core.c index e44a317a2a2a..79329ec6373c 100644 --- a/drivers/pci/endpoint/pci-epf-core.c +++ b/drivers/pci/endpoint/pci-epf-core.c @@ -74,24 +74,37 @@ EXPORT_SYMBOL_GPL(pci_epf_bind); * @epf: the EPF device from whom to free the memory * @addr: the virtual address of the PCI EPF register space * @bar: the BAR number corresponding to the register space + * @type: Identifies if the allocated space is for primary EPC or secondary EPC * * Invoke to free the allocated PCI EPF register space. */ -void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar) +void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, + enum pci_epc_interface_type type) { struct device *dev = epf->epc->dev.parent; + struct pci_epf_bar *epf_bar; + struct pci_epc *epc; if (!addr) return; - dma_free_coherent(dev, epf->bar[bar].size, addr, - epf->bar[bar].phys_addr); + if (type == PRIMARY_INTERFACE) { + epc = epf->epc; + epf_bar = epf->bar; + } else { + epc = epf->sec_epc; + epf_bar = epf->sec_epc_bar; + } + + dev = epc->dev.parent; + dma_free_coherent(dev, epf_bar[bar].size, addr, + epf_bar[bar].phys_addr); - epf->bar[bar].phys_addr = 0; - epf->bar[bar].addr = NULL; - epf->bar[bar].size = 0; - epf->bar[bar].barno = 0; - epf->bar[bar].flags = 0; + epf_bar[bar].phys_addr = 0; + epf_bar[bar].addr = NULL; + epf_bar[bar].size = 0; + epf_bar[bar].barno = 0; + epf_bar[bar].flags = 0; } EXPORT_SYMBOL_GPL(pci_epf_free_space); @@ -101,15 +114,18 @@ EXPORT_SYMBOL_GPL(pci_epf_free_space); * @size: the size of the memory that has to be allocated * @bar: the BAR number corresponding to the allocated register space * @align: alignment size for the allocation region + * @type: Identifies if the allocation is for primary EPC or secondary EPC * * Invoke to allocate memory for the PCI EPF register space. */ void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, - size_t align) + size_t align, enum pci_epc_interface_type type) { - void *space; - struct device *dev = epf->epc->dev.parent; + struct pci_epf_bar *epf_bar; dma_addr_t phys_addr; + struct pci_epc *epc; + struct device *dev; + void *space; if (size < 128) size = 128; @@ -119,17 +135,26 @@ void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, else size = roundup_pow_of_two(size); + if (type == PRIMARY_INTERFACE) { + epc = epf->epc; + epf_bar = epf->bar; + } else { + epc = epf->sec_epc; + epf_bar = epf->sec_epc_bar; + } + + dev = epc->dev.parent; space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); if (!space) { dev_err(dev, "failed to allocate mem space\n"); return NULL; } - epf->bar[bar].phys_addr = phys_addr; - epf->bar[bar].addr = space; - epf->bar[bar].size = size; - epf->bar[bar].barno = bar; - epf->bar[bar].flags |= upper_32_bits(size) ? + epf_bar[bar].phys_addr = phys_addr; + epf_bar[bar].addr = space; + epf_bar[bar].size = size; + epf_bar[bar].barno = bar; + epf_bar[bar].flags |= upper_32_bits(size) ? PCI_BASE_ADDRESS_MEM_TYPE_64 : PCI_BASE_ADDRESS_MEM_TYPE_32; diff --git a/include/linux/pci-epc.h b/include/linux/pci-epc.h index 88d311bad984..d9cb3944fb87 100644 --- a/include/linux/pci-epc.h +++ b/include/linux/pci-epc.h @@ -13,6 +13,12 @@ struct pci_epc; +enum pci_epc_interface_type { + UNKNOWN_INTERFACE = -1, + PRIMARY_INTERFACE, + SECONDARY_INTERFACE, +}; + enum pci_epc_irq_type { PCI_EPC_IRQ_UNKNOWN, PCI_EPC_IRQ_LEGACY, @@ -20,6 +26,19 @@ enum pci_epc_irq_type { PCI_EPC_IRQ_MSIX, }; +static inline const char * +pci_epc_interface_string(enum pci_epc_interface_type type) +{ + switch (type) { + case PRIMARY_INTERFACE: + return "primary"; + case SECONDARY_INTERFACE: + return "secondary"; + default: + return "UNKNOWN interface"; + } +} + /** * struct pci_epc_ops - set of function pointers for performing EPC operations * @write_header: ops to populate configuration space header @@ -175,10 +194,12 @@ __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, struct module *owner); void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc); void pci_epc_destroy(struct pci_epc *epc); -int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf); +int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, + enum pci_epc_interface_type type); void pci_epc_linkup(struct pci_epc *epc); void pci_epc_init_notify(struct pci_epc *epc); -void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf); +void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, + enum pci_epc_interface_type type); int pci_epc_write_header(struct pci_epc *epc, u8 func_no, struct pci_epf_header *hdr); int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, diff --git a/include/linux/pci-epf.h b/include/linux/pci-epf.h index f373a134ac04..1dc66824f5a8 100644 --- a/include/linux/pci-epf.h +++ b/include/linux/pci-epf.h @@ -14,6 +14,7 @@ #include struct pci_epf; +enum pci_epc_interface_type; enum pci_notify_event { CORE_INIT, @@ -119,6 +120,11 @@ struct pci_epf_bar { * @list: to add pci_epf as a list of PCI endpoint functions to pci_epc * @nb: notifier block to notify EPF of any EPC events (like linkup) * @lock: mutex to protect pci_epf_ops + * @sec_epc: the secondary EPC device to which this EPF device is bound + * @sec_epc_list: to add pci_epf as list of PCI endpoint functions to secondary + * EPC device + * @sec_epc_bar: represents the BAR of EPF device associated with secondary EPC + * @sec_epc_func_no: unique (physical) function number within the secondary EPC */ struct pci_epf { struct device dev; @@ -135,6 +141,12 @@ struct pci_epf { struct notifier_block nb; /* mutex to protect against concurrent access of pci_epf_ops */ struct mutex lock; + + /* Below members are to attach secondary EPC to an endpoint function */ + struct pci_epc *sec_epc; + struct list_head sec_epc_list; + struct pci_epf_bar sec_epc_bar[6]; + u8 sec_epc_func_no; }; /** @@ -171,8 +183,9 @@ int __pci_epf_register_driver(struct pci_epf_driver *driver, struct module *owner); void pci_epf_unregister_driver(struct pci_epf_driver *driver); void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, - size_t align); -void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar); + size_t align, enum pci_epc_interface_type type); +void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, + enum pci_epc_interface_type type); int pci_epf_bind(struct pci_epf *epf); void pci_epf_unbind(struct pci_epf *epf); #endif /* __LINUX_PCI_EPF_H */ -- cgit v1.2.3 From e85a2d7837622bd99c96f5bbc7f972da90c285a2 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:27:59 +0530 Subject: PCI: endpoint: Add support in configfs to associate two EPCs with EPF Now that PCI endpoint core supports to add secondary endpoint controller (EPC) with endpoint function (EPF), Add support in configfs to associate two EPCs with EPF. This creates "primary" and "secondary" directory inside the directory created by users for EPF device. Users have to add a symlink of endpoint controller (pci_ep/controllers/) to "primary" or "secondary" directory to bind EPF to primary and secondary EPF interfaces respectively. Existing method of linking directory representing EPF device to directory representing EPC device to associate a single EPC device with a EPF device will continue to work. Link: https://lore.kernel.org/r/20210201195809.7342-8-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- Documentation/PCI/endpoint/pci-endpoint-cfs.rst | 10 ++ drivers/pci/endpoint/pci-ep-cfs.c | 147 ++++++++++++++++++++++++ 2 files changed, 157 insertions(+) (limited to 'drivers/pci') diff --git a/Documentation/PCI/endpoint/pci-endpoint-cfs.rst b/Documentation/PCI/endpoint/pci-endpoint-cfs.rst index 1bbd81ed06c8..696f8eeb4738 100644 --- a/Documentation/PCI/endpoint/pci-endpoint-cfs.rst +++ b/Documentation/PCI/endpoint/pci-endpoint-cfs.rst @@ -68,6 +68,16 @@ created) ... subsys_vendor_id ... subsys_id ... interrupt_pin + ... primary/ + ... / + ... secondary/ + ... / + +If an EPF device has to be associated with 2 EPCs (like in the case of +Non-transparent bridge), symlink of endpoint controller connected to primary +interface should be added in 'primary' directory and symlink of endpoint +controller connected to secondary interface should be added in 'secondary' +directory. EPC Device ========== diff --git a/drivers/pci/endpoint/pci-ep-cfs.c b/drivers/pci/endpoint/pci-ep-cfs.c index 6ca9e2f92460..8f750961d6ab 100644 --- a/drivers/pci/endpoint/pci-ep-cfs.c +++ b/drivers/pci/endpoint/pci-ep-cfs.c @@ -21,6 +21,9 @@ static struct config_group *controllers_group; struct pci_epf_group { struct config_group group; + struct config_group primary_epc_group; + struct config_group secondary_epc_group; + struct delayed_work cfs_work; struct pci_epf *epf; int index; }; @@ -41,6 +44,127 @@ static inline struct pci_epc_group *to_pci_epc_group(struct config_item *item) return container_of(to_config_group(item), struct pci_epc_group, group); } +static int pci_secondary_epc_epf_link(struct config_item *epf_item, + struct config_item *epc_item) +{ + int ret; + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + struct pci_epc *epc = epc_group->epc; + struct pci_epf *epf = epf_group->epf; + + ret = pci_epc_add_epf(epc, epf, SECONDARY_INTERFACE); + if (ret) + return ret; + + ret = pci_epf_bind(epf); + if (ret) { + pci_epc_remove_epf(epc, epf, SECONDARY_INTERFACE); + return ret; + } + + return 0; +} + +static void pci_secondary_epc_epf_unlink(struct config_item *epc_item, + struct config_item *epf_item) +{ + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + struct pci_epc *epc; + struct pci_epf *epf; + + WARN_ON_ONCE(epc_group->start); + + epc = epc_group->epc; + epf = epf_group->epf; + pci_epf_unbind(epf); + pci_epc_remove_epf(epc, epf, SECONDARY_INTERFACE); +} + +static struct configfs_item_operations pci_secondary_epc_item_ops = { + .allow_link = pci_secondary_epc_epf_link, + .drop_link = pci_secondary_epc_epf_unlink, +}; + +static const struct config_item_type pci_secondary_epc_type = { + .ct_item_ops = &pci_secondary_epc_item_ops, + .ct_owner = THIS_MODULE, +}; + +static struct config_group +*pci_ep_cfs_add_secondary_group(struct pci_epf_group *epf_group) +{ + struct config_group *secondary_epc_group; + + secondary_epc_group = &epf_group->secondary_epc_group; + config_group_init_type_name(secondary_epc_group, "secondary", + &pci_secondary_epc_type); + configfs_register_group(&epf_group->group, secondary_epc_group); + + return secondary_epc_group; +} + +static int pci_primary_epc_epf_link(struct config_item *epf_item, + struct config_item *epc_item) +{ + int ret; + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + struct pci_epc *epc = epc_group->epc; + struct pci_epf *epf = epf_group->epf; + + ret = pci_epc_add_epf(epc, epf, PRIMARY_INTERFACE); + if (ret) + return ret; + + ret = pci_epf_bind(epf); + if (ret) { + pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE); + return ret; + } + + return 0; +} + +static void pci_primary_epc_epf_unlink(struct config_item *epc_item, + struct config_item *epf_item) +{ + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + struct pci_epc *epc; + struct pci_epf *epf; + + WARN_ON_ONCE(epc_group->start); + + epc = epc_group->epc; + epf = epf_group->epf; + pci_epf_unbind(epf); + pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE); +} + +static struct configfs_item_operations pci_primary_epc_item_ops = { + .allow_link = pci_primary_epc_epf_link, + .drop_link = pci_primary_epc_epf_unlink, +}; + +static const struct config_item_type pci_primary_epc_type = { + .ct_item_ops = &pci_primary_epc_item_ops, + .ct_owner = THIS_MODULE, +}; + +static struct config_group +*pci_ep_cfs_add_primary_group(struct pci_epf_group *epf_group) +{ + struct config_group *primary_epc_group = &epf_group->primary_epc_group; + + config_group_init_type_name(primary_epc_group, "primary", + &pci_primary_epc_type); + configfs_register_group(&epf_group->group, primary_epc_group); + + return primary_epc_group; +} + static ssize_t pci_epc_start_store(struct config_item *item, const char *page, size_t len) { @@ -372,6 +496,25 @@ static const struct config_item_type pci_epf_type = { .ct_owner = THIS_MODULE, }; +static void pci_epf_cfs_work(struct work_struct *work) +{ + struct pci_epf_group *epf_group; + struct config_group *group; + + epf_group = container_of(work, struct pci_epf_group, cfs_work.work); + group = pci_ep_cfs_add_primary_group(epf_group); + if (IS_ERR(group)) { + pr_err("failed to create 'primary' EPC interface\n"); + return; + } + + group = pci_ep_cfs_add_secondary_group(epf_group); + if (IS_ERR(group)) { + pr_err("failed to create 'secondary' EPC interface\n"); + return; + } +} + static struct config_group *pci_epf_make(struct config_group *group, const char *name) { @@ -414,6 +557,10 @@ static struct config_group *pci_epf_make(struct config_group *group, kfree(epf_name); + INIT_DELAYED_WORK(&epf_group->cfs_work, pci_epf_cfs_work); + queue_delayed_work(system_wq, &epf_group->cfs_work, + msecs_to_jiffies(1)); + return &epf_group->group; free_name: -- cgit v1.2.3 From 87d5972e476f6c4e98a0abce713c54c6f40661b0 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:00 +0530 Subject: PCI: endpoint: Add pci_epc_ops to map MSI IRQ Add pci_epc_ops to map physical address to MSI address and return MSI data. The physical address is an address in the outbound region. This is required to implement doorbell functionality of NTB (non-transparent bridge) wherein EPC on either side of the interface (primary and secondary) can directly write to the physical address (in outbound region) of the other interface to ring doorbell using MSI. Link: https://lore.kernel.org/r/20210201195809.7342-9-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-epc-core.c | 41 +++++++++++++++++++++++++++++++++++++ include/linux/pci-epc.h | 8 ++++++++ 2 files changed, 49 insertions(+) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c index 3693eca5b030..cc8f9eb2b177 100644 --- a/drivers/pci/endpoint/pci-epc-core.c +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -230,6 +230,47 @@ int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, } EXPORT_SYMBOL_GPL(pci_epc_raise_irq); +/** + * pci_epc_map_msi_irq() - Map physical address to MSI address and return + * MSI data + * @epc: the EPC device which has the MSI capability + * @func_no: the physical endpoint function number in the EPC device + * @phys_addr: the physical address of the outbound region + * @interrupt_num: the MSI interrupt number + * @entry_size: Size of Outbound address region for each interrupt + * @msi_data: the data that should be written in order to raise MSI interrupt + * with interrupt number as 'interrupt num' + * @msi_addr_offset: Offset of MSI address from the aligned outbound address + * to which the MSI address is mapped + * + * Invoke to map physical address to MSI address and return MSI data. The + * physical address should be an address in the outbound region. This is + * required to implement doorbell functionality of NTB wherein EPC on either + * side of the interface (primary and secondary) can directly write to the + * physical address (in outbound region) of the other interface to ring + * doorbell. + */ +int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, phys_addr_t phys_addr, + u8 interrupt_num, u32 entry_size, u32 *msi_data, + u32 *msi_addr_offset) +{ + int ret; + + if (IS_ERR_OR_NULL(epc)) + return -EINVAL; + + if (!epc->ops->map_msi_irq) + return -EINVAL; + + mutex_lock(&epc->lock); + ret = epc->ops->map_msi_irq(epc, func_no, phys_addr, interrupt_num, + entry_size, msi_data, msi_addr_offset); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); + /** * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated * @epc: the EPC device to which MSI interrupts was requested diff --git a/include/linux/pci-epc.h b/include/linux/pci-epc.h index d9cb3944fb87..b82c9b100e97 100644 --- a/include/linux/pci-epc.h +++ b/include/linux/pci-epc.h @@ -55,6 +55,7 @@ pci_epc_interface_string(enum pci_epc_interface_type type) * @get_msix: ops to get the number of MSI-X interrupts allocated by the RC * from the MSI-X capability register * @raise_irq: ops to raise a legacy, MSI or MSI-X interrupt + * @map_msi_irq: ops to map physical address to MSI address and return MSI data * @start: ops to start the PCI link * @stop: ops to stop the PCI link * @owner: the module owner containing the ops @@ -77,6 +78,10 @@ struct pci_epc_ops { int (*get_msix)(struct pci_epc *epc, u8 func_no); int (*raise_irq)(struct pci_epc *epc, u8 func_no, enum pci_epc_irq_type type, u16 interrupt_num); + int (*map_msi_irq)(struct pci_epc *epc, u8 func_no, + phys_addr_t phys_addr, u8 interrupt_num, + u32 entry_size, u32 *msi_data, + u32 *msi_addr_offset); int (*start)(struct pci_epc *epc); void (*stop)(struct pci_epc *epc); const struct pci_epc_features* (*get_features)(struct pci_epc *epc, @@ -216,6 +221,9 @@ int pci_epc_get_msi(struct pci_epc *epc, u8 func_no); int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts, enum pci_barno, u32 offset); int pci_epc_get_msix(struct pci_epc *epc, u8 func_no); +int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, + phys_addr_t phys_addr, u8 interrupt_num, + u32 entry_size, u32 *msi_data, u32 *msi_addr_offset); int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, enum pci_epc_irq_type type, u16 interrupt_num); int pci_epc_start(struct pci_epc *epc); -- cgit v1.2.3 From 256ae475201b16fd69e00dd6c2d14035e4ea5745 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:01 +0530 Subject: PCI: endpoint: Add pci_epf_ops to expose function-specific attrs In addition to the attributes that are generic across function drivers documented in Documentation/PCI/endpoint/pci-endpoint-cfs.rst, there could be function-specific attributes that has to be exposed by the function driver to be configured by the user. Add ->add_cfs() in pci_epf_ops to be populated by the function driver if it has to expose any function-specific attributes and pci_epf_type_add_cfs() to be invoked by pci-ep-cfs.c when sub-directory to main function directory is created. Link: https://lore.kernel.org/r/20210201195809.7342-10-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-epf-core.c | 32 ++++++++++++++++++++++++++++++++ include/linux/pci-epf.h | 5 +++++ 2 files changed, 37 insertions(+) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-epf-core.c b/drivers/pci/endpoint/pci-epf-core.c index 79329ec6373c..7646c8660d42 100644 --- a/drivers/pci/endpoint/pci-epf-core.c +++ b/drivers/pci/endpoint/pci-epf-core.c @@ -20,6 +20,38 @@ static DEFINE_MUTEX(pci_epf_mutex); static struct bus_type pci_epf_bus_type; static const struct device_type pci_epf_type; +/** + * pci_epf_type_add_cfs() - Help function drivers to expose function specific + * attributes in configfs + * @epf: the EPF device that has to be configured using configfs + * @group: the parent configfs group (corresponding to entries in + * pci_epf_device_id) + * + * Invoke to expose function specific attributes in configfs. If the function + * driver does not have anything to expose (attributes configured by user), + * return NULL. + */ +struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf, + struct config_group *group) +{ + struct config_group *epf_type_group; + + if (!epf->driver) { + dev_err(&epf->dev, "epf device not bound to driver\n"); + return NULL; + } + + if (!epf->driver->ops->add_cfs) + return NULL; + + mutex_lock(&epf->lock); + epf_type_group = epf->driver->ops->add_cfs(epf, group); + mutex_unlock(&epf->lock); + + return epf_type_group; +} +EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs); + /** * pci_epf_unbind() - Notify the function driver that the binding between the * EPF device and EPC device has been lost diff --git a/include/linux/pci-epf.h b/include/linux/pci-epf.h index 1dc66824f5a8..b241e7dd171f 100644 --- a/include/linux/pci-epf.h +++ b/include/linux/pci-epf.h @@ -62,10 +62,13 @@ struct pci_epf_header { * @bind: ops to perform when a EPC device has been bound to EPF device * @unbind: ops to perform when a binding has been lost between a EPC device * and EPF device + * @add_cfs: ops to initialize function specific configfs attributes */ struct pci_epf_ops { int (*bind)(struct pci_epf *epf); void (*unbind)(struct pci_epf *epf); + struct config_group *(*add_cfs)(struct pci_epf *epf, + struct config_group *group); }; /** @@ -188,4 +191,6 @@ void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, enum pci_epc_interface_type type); int pci_epf_bind(struct pci_epf *epf); void pci_epf_unbind(struct pci_epf *epf); +struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf, + struct config_group *group); #endif /* __LINUX_PCI_EPF_H */ -- cgit v1.2.3 From 38ad827e3bc0f0e94628ee1d8dc31e778d9be40f Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:02 +0530 Subject: PCI: endpoint: Allow user to create sub-directory of 'EPF Device' directory Documentation/PCI/endpoint/pci-endpoint-cfs.rst explains how a user has to create a directory in-order to create a 'EPF Device' that can be configured/probed by 'EPF Driver'. Allow user to create a sub-directory of 'EPF Device' directory for any function specific attributes that has to be exposed to the user. Link: https://lore.kernel.org/r/20210201195809.7342-11-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/pci-ep-cfs.c | 23 +++++++++++++++++++++++ include/linux/pci-epf.h | 3 +++ 2 files changed, 26 insertions(+) (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/pci-ep-cfs.c b/drivers/pci/endpoint/pci-ep-cfs.c index 8f750961d6ab..f3a8b833b479 100644 --- a/drivers/pci/endpoint/pci-ep-cfs.c +++ b/drivers/pci/endpoint/pci-ep-cfs.c @@ -490,7 +490,29 @@ static struct configfs_item_operations pci_epf_ops = { .release = pci_epf_release, }; +static struct config_group *pci_epf_type_make(struct config_group *group, + const char *name) +{ + struct pci_epf_group *epf_group = to_pci_epf_group(&group->cg_item); + struct config_group *epf_type_group; + + epf_type_group = pci_epf_type_add_cfs(epf_group->epf, group); + return epf_type_group; +} + +static void pci_epf_type_drop(struct config_group *group, + struct config_item *item) +{ + config_item_put(item); +} + +static struct configfs_group_operations pci_epf_type_group_ops = { + .make_group = &pci_epf_type_make, + .drop_item = &pci_epf_type_drop, +}; + static const struct config_item_type pci_epf_type = { + .ct_group_ops = &pci_epf_type_group_ops, .ct_item_ops = &pci_epf_ops, .ct_attrs = pci_epf_attrs, .ct_owner = THIS_MODULE, @@ -553,6 +575,7 @@ static struct config_group *pci_epf_make(struct config_group *group, goto free_name; } + epf->group = &epf_group->group; epf_group->epf = epf; kfree(epf_name); diff --git a/include/linux/pci-epf.h b/include/linux/pci-epf.h index b241e7dd171f..6833e2160ef1 100644 --- a/include/linux/pci-epf.h +++ b/include/linux/pci-epf.h @@ -9,6 +9,7 @@ #ifndef __LINUX_PCI_EPF_H #define __LINUX_PCI_EPF_H +#include #include #include #include @@ -128,6 +129,7 @@ struct pci_epf_bar { * EPC device * @sec_epc_bar: represents the BAR of EPF device associated with secondary EPC * @sec_epc_func_no: unique (physical) function number within the secondary EPC + * @group: configfs group associated with the EPF device */ struct pci_epf { struct device dev; @@ -150,6 +152,7 @@ struct pci_epf { struct list_head sec_epc_list; struct pci_epf_bar sec_epc_bar[6]; u8 sec_epc_func_no; + struct config_group *group; }; /** -- cgit v1.2.3 From dbcc542f36086abcaec28a858b17f2c358d57973 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:03 +0530 Subject: PCI: cadence: Implement ->msi_map_irq() ops Implement ->msi_map_irq() ops in order to map physical address to MSI address and return MSI data. Link: https://lore.kernel.org/r/20210201195809.7342-12-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas Reviewed-by: Tom Joseph --- drivers/pci/controller/cadence/pcie-cadence-ep.c | 53 ++++++++++++++++++++++++ 1 file changed, 53 insertions(+) (limited to 'drivers/pci') diff --git a/drivers/pci/controller/cadence/pcie-cadence-ep.c b/drivers/pci/controller/cadence/pcie-cadence-ep.c index 9e2b024d32f2..dc88078194cb 100644 --- a/drivers/pci/controller/cadence/pcie-cadence-ep.c +++ b/drivers/pci/controller/cadence/pcie-cadence-ep.c @@ -382,6 +382,57 @@ static int cdns_pcie_ep_send_msi_irq(struct cdns_pcie_ep *ep, u8 fn, return 0; } +static int cdns_pcie_ep_map_msi_irq(struct pci_epc *epc, u8 fn, + phys_addr_t addr, u8 interrupt_num, + u32 entry_size, u32 *msi_data, + u32 *msi_addr_offset) +{ + struct cdns_pcie_ep *ep = epc_get_drvdata(epc); + u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET; + struct cdns_pcie *pcie = &ep->pcie; + u64 pci_addr, pci_addr_mask = 0xff; + u16 flags, mme, data, data_mask; + u8 msi_count; + int ret; + int i; + + /* Check whether the MSI feature has been enabled by the PCI host. */ + flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS); + if (!(flags & PCI_MSI_FLAGS_ENABLE)) + return -EINVAL; + + /* Get the number of enabled MSIs */ + mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4; + msi_count = 1 << mme; + if (!interrupt_num || interrupt_num > msi_count) + return -EINVAL; + + /* Compute the data value to be written. */ + data_mask = msi_count - 1; + data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64); + data = data & ~data_mask; + + /* Get the PCI address where to write the data into. */ + pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI); + pci_addr <<= 32; + pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO); + pci_addr &= GENMASK_ULL(63, 2); + + for (i = 0; i < interrupt_num; i++) { + ret = cdns_pcie_ep_map_addr(epc, fn, addr, + pci_addr & ~pci_addr_mask, + entry_size); + if (ret) + return ret; + addr = addr + entry_size; + } + + *msi_data = data; + *msi_addr_offset = pci_addr & pci_addr_mask; + + return 0; +} + static int cdns_pcie_ep_send_msix_irq(struct cdns_pcie_ep *ep, u8 fn, u16 interrupt_num) { @@ -481,6 +532,7 @@ static const struct pci_epc_features cdns_pcie_epc_features = { .linkup_notifier = false, .msi_capable = true, .msix_capable = true, + .align = 256, }; static const struct pci_epc_features* @@ -500,6 +552,7 @@ static const struct pci_epc_ops cdns_pcie_epc_ops = { .set_msix = cdns_pcie_ep_set_msix, .get_msix = cdns_pcie_ep_get_msix, .raise_irq = cdns_pcie_ep_raise_irq, + .map_msi_irq = cdns_pcie_ep_map_msi_irq, .start = cdns_pcie_ep_start, .get_features = cdns_pcie_ep_get_features, }; -- cgit v1.2.3 From a62074a9ba856082a60ff60693abd79f4b55177d Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:04 +0530 Subject: PCI: cadence: Configure LM_EP_FUNC_CFG based on epc->function_num_map The number of functions supported by the endpoint controller is configured in LM_EP_FUNC_CFG based on func_no member of struct pci_epf. Now that an endpoint function can be associated with two endpoint controllers (primary and secondary), just using func_no will not suffice as that will take into account only if the endpoint controller is associated with the primary interface of endpoint function. Instead use epc->function_num_map which will already have the configured functions information (irrespective of whether the endpoint controller is associated with primary or secondary interface). Link: https://lore.kernel.org/r/20210201195809.7342-13-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas Reviewed-by: Tom Joseph --- drivers/pci/controller/cadence/pcie-cadence-ep.c | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) (limited to 'drivers/pci') diff --git a/drivers/pci/controller/cadence/pcie-cadence-ep.c b/drivers/pci/controller/cadence/pcie-cadence-ep.c index dc88078194cb..897cdde02bd8 100644 --- a/drivers/pci/controller/cadence/pcie-cadence-ep.c +++ b/drivers/pci/controller/cadence/pcie-cadence-ep.c @@ -506,18 +506,13 @@ static int cdns_pcie_ep_start(struct pci_epc *epc) struct cdns_pcie_ep *ep = epc_get_drvdata(epc); struct cdns_pcie *pcie = &ep->pcie; struct device *dev = pcie->dev; - struct pci_epf *epf; - u32 cfg; int ret; /* * BIT(0) is hardwired to 1, hence function 0 is always enabled * and can't be disabled anyway. */ - cfg = BIT(0); - list_for_each_entry(epf, &epc->pci_epf, list) - cfg |= BIT(epf->func_no); - cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, cfg); + cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, epc->function_num_map); ret = cdns_pcie_start_link(pcie); if (ret) { -- cgit v1.2.3 From 8b821cf761503b80d0bd052f932adfe1bc1a0088 Mon Sep 17 00:00:00 2001 From: Kishon Vijay Abraham I Date: Tue, 2 Feb 2021 01:28:05 +0530 Subject: PCI: endpoint: Add EP function driver to provide NTB functionality Add a new endpoint function driver to provide NTB functionality using multiple PCIe endpoint instances. [arnd@arndb.de: Select configfs dependency] [yebin10@huawei.com: Fix unused but set variables] [geert+renesas@glider.be: Explain NTB in PCI_EPF_NTB help text] Link: https://lore.kernel.org/r/20210201195809.7342-14-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I Signed-off-by: Arnd Bergmann Signed-off-by: Ye Bin Signed-off-by: Geert Uytterhoeven Signed-off-by: Lorenzo Pieralisi Signed-off-by: Bjorn Helgaas --- drivers/pci/endpoint/functions/Kconfig | 13 + drivers/pci/endpoint/functions/Makefile | 1 + drivers/pci/endpoint/functions/pci-epf-ntb.c | 2128 ++++++++++++++++++++++++++ 3 files changed, 2142 insertions(+) create mode 100644 drivers/pci/endpoint/functions/pci-epf-ntb.c (limited to 'drivers/pci') diff --git a/drivers/pci/endpoint/functions/Kconfig b/drivers/pci/endpoint/functions/Kconfig index 8820d0f7ec77..5f1242ca2f4e 100644 --- a/drivers/pci/endpoint/functions/Kconfig +++ b/drivers/pci/endpoint/functions/Kconfig @@ -12,3 +12,16 @@ config PCI_EPF_TEST for PCI Endpoint. If in doubt, say "N" to disable Endpoint test driver. + +config PCI_EPF_NTB + tristate "PCI Endpoint NTB driver" + depends on PCI_ENDPOINT + select CONFIGFS_FS + help + Select this configuration option to enable the Non-Transparent + Bridge (NTB) driver for PCI Endpoint. NTB driver implements NTB + controller functionality using multiple PCIe endpoint instances. + It can support NTB endpoint function devices created using + device tree. + + If in doubt, say "N" to disable Endpoint NTB driver. diff --git a/drivers/pci/endpoint/functions/Makefile b/drivers/pci/endpoint/functions/Makefile index d6fafff080e2..96ab932a537a 100644 --- a/drivers/pci/endpoint/functions/Makefile +++ b/drivers/pci/endpoint/functions/Makefile @@ -4,3 +4,4 @@ # obj-$(CONFIG_PCI_EPF_TEST) += pci-epf-test.o +obj-$(CONFIG_PCI_EPF_NTB) += pci-epf-ntb.o diff --git a/drivers/pci/endpoint/functions/pci-epf-ntb.c b/drivers/pci/endpoint/functions/pci-epf-ntb.c new file mode 100644 index 000000000000..338148cf56f5 --- /dev/null +++ b/drivers/pci/endpoint/functions/pci-epf-ntb.c @@ -0,0 +1,2128 @@ +// SPDX-License-Identifier: GPL-2.0 +/** + * Endpoint Function Driver to implement Non-Transparent Bridge functionality + * + * Copyright (C) 2020 Texas Instruments + * Author: Kishon Vijay Abraham I + */ + +/* + * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint + * (EP) controller instances (see diagram below) in such a way that + * transactions from one EP controller are routed to the other EP controller. + * Once PCI NTB function driver configures the SoC with multiple EP instances, + * HOST1 and HOST2 can communicate with each other using SoC as a bridge. + * + * +-------------+ +-------------+ + * | | | | + * | HOST1 | | HOST2 | + * | | | | + * +------^------+ +------^------+ + * | | + * | | + * +---------|-------------------------------------------------|---------+ + * | +------v------+ +------v------+ | + * | | | | | | + * | | EP | | EP | | + * | | CONTROLLER1 | | CONTROLLER2 | | + * | | <-----------------------------------> | | + * | | | | | | + * | | | | | | + * | | | SoC With Multiple EP Instances | | | + * | | | (Configured using NTB Function) | | | + * | +-------------+ +-------------+ | + * +---------------------------------------------------------------------+ + */ + +#include +#include +#include +#include + +#include +#include + +static struct workqueue_struct *kpcintb_workqueue; + +#define COMMAND_CONFIGURE_DOORBELL 1 +#define COMMAND_TEARDOWN_DOORBELL 2 +#define COMMAND_CONFIGURE_MW 3 +#define COMMAND_TEARDOWN_MW 4 +#define COMMAND_LINK_UP 5 +#define COMMAND_LINK_DOWN 6 + +#define COMMAND_STATUS_OK 1 +#define COMMAND_STATUS_ERROR 2 + +#define LINK_STATUS_UP BIT(0) + +#define SPAD_COUNT 64 +#define DB_COUNT 4 +#define NTB_MW_OFFSET 2 +#define DB_COUNT_MASK GENMASK(15, 0) +#define MSIX_ENABLE BIT(16) +#define MAX_DB_COUNT 32 +#define MAX_MW 4 + +enum epf_ntb_bar { + BAR_CONFIG, + BAR_PEER_SPAD, + BAR_DB_MW1, + BAR_MW2, + BAR_MW3, + BAR_MW4, +}; + +struct epf_ntb { + u32 num_mws; + u32 db_count; + u32 spad_count; + struct pci_epf *epf; + u64 mws_size[MAX_MW]; + struct config_group group; + struct epf_ntb_epc *epc[2]; +}; + +#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group) + +struct epf_ntb_epc { + u8 func_no; + bool linkup; + bool is_msix; + int msix_bar; + u32 spad_size; + struct pci_epc *epc; + struct epf_ntb *epf_ntb; + void __iomem *mw_addr[6]; + size_t msix_table_offset; + struct epf_ntb_ctrl *reg; + struct pci_epf_bar *epf_bar; + enum pci_barno epf_ntb_bar[6]; + struct delayed_work cmd_handler; + enum pci_epc_interface_type type; + const struct pci_epc_features *epc_features; +}; + +struct epf_ntb_ctrl { + u32 command; + u32 argument; + u16 command_status; + u16 link_status; + u32 topology; + u64 addr; + u64 size; + u32 num_mws; + u32 mw1_offset; + u32 spad_offset; + u32 spad_count; + u32 db_entry_size; + u32 db_data[MAX_DB_COUNT]; + u32 db_offset[MAX_DB_COUNT]; +} __packed; + +static struct pci_epf_header epf_ntb_header = { + .vendorid = PCI_ANY_ID, + .deviceid = PCI_ANY_ID, + .baseclass_code = PCI_BASE_CLASS_MEMORY, + .interrupt_pin = PCI_INTERRUPT_INTA, +}; + +/** + * epf_ntb_link_up() - Raise link_up interrupt to both the hosts + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @link_up: true or false indicating Link is UP or Down + * + * Once NTB function in HOST1 and the NTB function in HOST2 invoke + * ntb_link_enable(), this NTB function driver will trigger a link event to + * the NTB client in both the hosts. + */ +static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up) +{ + enum pci_epc_interface_type type; + enum pci_epc_irq_type irq_type; + struct epf_ntb_epc *ntb_epc; + struct epf_ntb_ctrl *ctrl; + struct pci_epc *epc; + bool is_msix; + u8 func_no; + int ret; + + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + func_no = ntb_epc->func_no; + is_msix = ntb_epc->is_msix; + ctrl = ntb_epc->reg; + if (link_up) + ctrl->link_status |= LINK_STATUS_UP; + else + ctrl->link_status &= ~LINK_STATUS_UP; + irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI; + ret = pci_epc_raise_irq(epc, func_no, irq_type, 1); + if (ret) { + dev_err(&epc->dev, + "%s intf: Failed to raise Link Up IRQ\n", + pci_epc_interface_string(type)); + return ret; + } + } + + return 0; +} + +/** + * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host + * to access the memory window of other host + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * @mw: Index of the memory window (either 0, 1, 2 or 3) + * + * +-----------------+ +---->+----------------+-----------+-----------------+ + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | + * +-----------------+ | +----------------+ +-----------------+ + * | BAR1 | | | Doorbell 2 +---------+ | | + * +-----------------+----+ +----------------+ | | | + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ + * +-----------------+ | |----------------+ | | | | + * | BAR4 | | | | | | +-----------------+ + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| + * | BAR5 | | | | | | +-----------------+ + * +-----------------+ +---->-----------------+ | | | | + * EP CONTROLLER 1 | | | | +-----------------+ + * | | | +---->+ MSI|X ADDRESS 4 | + * +----------------+ | +-----------------+ + * (A) EP CONTROLLER 2 | | | + * (OB SPACE) | | | + * +-------> MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * This function performs stage (B) in the above diagram (see MW1) i.e., map OB + * address space of memory window to PCI address space. + * + * This operation requires 3 parameters + * 1) Address in the outbound address space + * 2) Address in the PCI Address space + * 3) Size of the address region to be mapped + * + * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is + * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3 + * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This + * is populated in epf_ntb_alloc_peer_mem() in this driver. + * + * The address and size of the PCI address region that has to be mapped would + * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is + * connected to HOST2. + * + * Please note Memory window1 (MW1) and Doorbell registers together will be + * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's + * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1], + * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2]. + */ +static int epf_ntb_configure_mw(struct epf_ntb *ntb, + enum pci_epc_interface_type type, u32 mw) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *peer_epf_bar; + enum pci_barno peer_barno; + struct epf_ntb_ctrl *ctrl; + phys_addr_t phys_addr; + struct pci_epc *epc; + u64 addr, size; + int ret = 0; + u8 func_no; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + + phys_addr = peer_epf_bar->phys_addr; + ctrl = ntb_epc->reg; + addr = ctrl->addr; + size = ctrl->size; + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) + phys_addr += ctrl->mw1_offset; + + if (size > ntb->mws_size[mw]) { + dev_err(&epc->dev, + "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n", + pci_epc_interface_string(type), mw, size, + ntb->mws_size[mw]); + ret = -EINVAL; + goto err_invalid_size; + } + + func_no = ntb_epc->func_no; + + ret = pci_epc_map_addr(epc, func_no, phys_addr, addr, size); + if (ret) + dev_err(&epc->dev, + "%s intf: Failed to map memory window %d address\n", + pci_epc_interface_string(type), mw); + +err_invalid_size: + + return ret; +} + +/** + * epf_ntb_teardown_mw() - Teardown the configured OB ATU + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * @mw: Index of the memory window (either 0, 1, 2 or 3) + * + * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using + * pci_epc_unmap_addr() + */ +static void epf_ntb_teardown_mw(struct epf_ntb *ntb, + enum pci_epc_interface_type type, u32 mw) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *peer_epf_bar; + enum pci_barno peer_barno; + struct epf_ntb_ctrl *ctrl; + phys_addr_t phys_addr; + struct pci_epc *epc; + u8 func_no; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + + phys_addr = peer_epf_bar->phys_addr; + ctrl = ntb_epc->reg; + if (mw + NTB_MW_OFFSET == BAR_DB_MW1) + phys_addr += ctrl->mw1_offset; + func_no = ntb_epc->func_no; + + pci_epc_unmap_addr(epc, func_no, phys_addr); +} + +/** + * epf_ntb_configure_msi() - Map OB address space to MSI address + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * @db_count: Number of doorbell interrupts to map + * + *+-----------------+ +----->+----------------+-----------+-----------------+ + *| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS | + *+-----------------+ | +----------------+ | +-----------------+ + *| BAR1 | | | Doorbell 2 +---+ | | + *+-----------------+----+ +----------------+ | | | + *| BAR2 | | Doorbell 3 +---+ | | + *+-----------------+----+ +----------------+ | | | + *| BAR3 | | | Doorbell 4 +---+ | | + *+-----------------+ | |----------------+ | | + *| BAR4 | | | | | | + *+-----------------+ | | MW1 | | | + *| BAR5 | | | | | | + *+-----------------+ +----->-----------------+ | | + * EP CONTROLLER 1 | | | | + * | | | | + * +----------------+ +-----------------+ + * (A) EP CONTROLLER 2 | | + * (OB SPACE) | | + * | MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * + * This function performs stage (B) in the above diagram (see Doorbell 1, + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to + * doorbell to MSI address in PCI address space. + * + * This operation requires 3 parameters + * 1) Address reserved for doorbell in the outbound address space + * 2) MSI-X address in the PCIe Address space + * 3) Number of MSI-X interrupts that has to be configured + * + * The address in the outbound address space (for the Doorbell) is stored in + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along + * with address for MW1. + * + * pci_epc_map_msi_irq() takes the MSI address from MSI capability register + * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI + * address. + * + * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt + * in db_data of the peer's control region. This helps the peer to raise + * doorbell of the other host by writing db_data to the BAR corresponding to + * BAR_DB_MW1. + */ +static int epf_ntb_configure_msi(struct epf_ntb *ntb, + enum pci_epc_interface_type type, u16 db_count) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + u32 db_entry_size, db_data, db_offset; + struct pci_epf_bar *peer_epf_bar; + struct epf_ntb_ctrl *peer_ctrl; + enum pci_barno peer_barno; + phys_addr_t phys_addr; + struct pci_epc *epc; + u8 func_no; + int ret, i; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + peer_ctrl = peer_ntb_epc->reg; + db_entry_size = peer_ctrl->db_entry_size; + + phys_addr = peer_epf_bar->phys_addr; + func_no = ntb_epc->func_no; + + ret = pci_epc_map_msi_irq(epc, func_no, phys_addr, db_count, + db_entry_size, &db_data, &db_offset); + if (ret) { + dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n", + pci_epc_interface_string(type)); + return ret; + } + + for (i = 0; i < db_count; i++) { + peer_ctrl->db_data[i] = db_data | i; + peer_ctrl->db_offset[i] = db_offset; + } + + return 0; +} + +/** + * epf_ntb_configure_msix() - Map OB address space to MSI-X address + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * @db_count: Number of doorbell interrupts to map + * + *+-----------------+ +----->+----------------+-----------+-----------------+ + *| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 | + *+-----------------+ | +----------------+ +-----------------+ + *| BAR1 | | | Doorbell 2 +---------+ | | + *+-----------------+----+ +----------------+ | | | + *| BAR2 | | Doorbell 3 +-------+ | +-----------------+ + *+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 | + *| BAR3 | | | Doorbell 4 +-----+ | +-----------------+ + *+-----------------+ | |----------------+ | | | | + *| BAR4 | | | | | | +-----------------+ + *+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3|| + *| BAR5 | | | | | +-----------------+ + *+-----------------+ +----->-----------------+ | | | + * EP CONTROLLER 1 | | | +-----------------+ + * | | +---->+ MSI-X ADDRESS 4 | + * +----------------+ +-----------------+ + * (A) EP CONTROLLER 2 | | + * (OB SPACE) | | + * | MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * This function performs stage (B) in the above diagram (see Doorbell 1, + * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to + * doorbell to MSI-X address in PCI address space. + * + * This operation requires 3 parameters + * 1) Address reserved for doorbell in the outbound address space + * 2) MSI-X address in the PCIe Address space + * 3) Number of MSI-X interrupts that has to be configured + * + * The address in the outbound address space (for the Doorbell) is stored in + * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to + * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along + * with address for MW1. + * + * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and + * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected + * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the + * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix() + * gets the MSI-X address and data. + * + * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt + * in db_data of the peer's control region. This helps the peer to raise + * doorbell of the other host by writing db_data to the BAR corresponding to + * BAR_DB_MW1. + */ +static int epf_ntb_configure_msix(struct epf_ntb *ntb, + enum pci_epc_interface_type type, + u16 db_count) +{ + const struct pci_epc_features *epc_features; + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *peer_epf_bar, *epf_bar; + struct pci_epf_msix_tbl *msix_tbl; + struct epf_ntb_ctrl *peer_ctrl; + u32 db_entry_size, msg_data; + enum pci_barno peer_barno; + phys_addr_t phys_addr; + struct pci_epc *epc; + size_t align; + u64 msg_addr; + u8 func_no; + int ret, i; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar]; + msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + phys_addr = peer_epf_bar->phys_addr; + peer_ctrl = peer_ntb_epc->reg; + epc_features = ntb_epc->epc_features; + align = epc_features->align; + + func_no = ntb_epc->func_no; + db_entry_size = peer_ctrl->db_entry_size; + + for (i = 0; i < db_count; i++) { + msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align); + msg_data = msix_tbl[i].msg_data; + ret = pci_epc_map_addr(epc, func_no, phys_addr, msg_addr, + db_entry_size); + if (ret) { + dev_err(&epc->dev, + "%s intf: Failed to configure MSI-X IRQ\n", + pci_epc_interface_string(type)); + return ret; + } + phys_addr = phys_addr + db_entry_size; + peer_ctrl->db_data[i] = msg_data; + peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1); + } + ntb_epc->is_msix = true; + + return 0; +} + +/** + * epf_ntb_configure_db() - Configure the Outbound Address Space for one host + * to ring the doorbell of other host + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * @db_count: Count of the number of doorbells that has to be configured + * @msix: Indicates whether MSI-X or MSI should be used + * + * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for + * one HOST to ring the doorbell of other HOST. + */ +static int epf_ntb_configure_db(struct epf_ntb *ntb, + enum pci_epc_interface_type type, + u16 db_count, bool msix) +{ + struct epf_ntb_epc *ntb_epc; + struct pci_epc *epc; + int ret; + + if (db_count > MAX_DB_COUNT) + return -EINVAL; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + if (msix) + ret = epf_ntb_configure_msix(ntb, type, db_count); + else + ret = epf_ntb_configure_msi(ntb, type, db_count); + + if (ret) + dev_err(&epc->dev, "%s intf: Failed to configure DB\n", + pci_epc_interface_string(type)); + + return ret; +} + +/** + * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X + * address + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address. + */ +static void +epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *peer_epf_bar; + enum pci_barno peer_barno; + phys_addr_t phys_addr; + struct pci_epc *epc; + u8 func_no; + + ntb_epc = ntb->epc[type]; + epc = ntb_epc->epc; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + phys_addr = peer_epf_bar->phys_addr; + func_no = ntb_epc->func_no; + + pci_epc_unmap_addr(epc, func_no, phys_addr); +} + +/** + * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host + * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY) + * + * Workqueue function that gets invoked for the two epf_ntb_epc + * periodically (once every 5ms) to see if it has received any commands + * from NTB host. The host can send commands to configure doorbell or + * configure memory window or to update link status. + */ +static void epf_ntb_cmd_handler(struct work_struct *work) +{ + enum pci_epc_interface_type type; + struct epf_ntb_epc *ntb_epc; + struct epf_ntb_ctrl *ctrl; + u32 command, argument; + struct epf_ntb *ntb; + struct device *dev; + u16 db_count; + bool is_msix; + int ret; + + ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work); + ctrl = ntb_epc->reg; + command = ctrl->command; + if (!command) + goto reset_handler; + argument = ctrl->argument; + + ctrl->command = 0; + ctrl->argument = 0; + + ctrl = ntb_epc->reg; + type = ntb_epc->type; + ntb = ntb_epc->epf_ntb; + dev = &ntb->epf->dev; + + switch (command) { + case COMMAND_CONFIGURE_DOORBELL: + db_count = argument & DB_COUNT_MASK; + is_msix = argument & MSIX_ENABLE; + ret = epf_ntb_configure_db(ntb, type, db_count, is_msix); + if (ret < 0) + ctrl->command_status = COMMAND_STATUS_ERROR; + else + ctrl->command_status = COMMAND_STATUS_OK; + break; + case COMMAND_TEARDOWN_DOORBELL: + epf_ntb_teardown_db(ntb, type); + ctrl->command_status = COMMAND_STATUS_OK; + break; + case COMMAND_CONFIGURE_MW: + ret = epf_ntb_configure_mw(ntb, type, argument); + if (ret < 0) + ctrl->command_status = COMMAND_STATUS_ERROR; + else + ctrl->command_status = COMMAND_STATUS_OK; + break; + case COMMAND_TEARDOWN_MW: + epf_ntb_teardown_mw(ntb, type, argument); + ctrl->command_status = COMMAND_STATUS_OK; + break; + case COMMAND_LINK_UP: + ntb_epc->linkup = true; + if (ntb->epc[PRIMARY_INTERFACE]->linkup && + ntb->epc[SECONDARY_INTERFACE]->linkup) { + ret = epf_ntb_link_up(ntb, true); + if (ret < 0) + ctrl->command_status = COMMAND_STATUS_ERROR; + else + ctrl->command_status = COMMAND_STATUS_OK; + goto reset_handler; + } + ctrl->command_status = COMMAND_STATUS_OK; + break; + case COMMAND_LINK_DOWN: + ntb_epc->linkup = false; + ret = epf_ntb_link_up(ntb, false); + if (ret < 0) + ctrl->command_status = COMMAND_STATUS_ERROR; + else + ctrl->command_status = COMMAND_STATUS_OK; + break; + default: + dev_err(dev, "%s intf UNKNOWN command: %d\n", + pci_epc_interface_string(type), command); + break; + } + +reset_handler: + queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler, + msecs_to_jiffies(5)); +} + +/** + * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + *+-----------------+------->+------------------+ +-----------------+ + *| BAR0 | | CONFIG REGION | | BAR0 | + *+-----------------+----+ +------------------+<-------+-----------------+ + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | + *+-----------------+ +-->+------------------+<-------+-----------------+ + *| BAR2 | Local Memory | BAR2 | + *+-----------------+ +-----------------+ + *| BAR3 | | BAR3 | + *+-----------------+ +-----------------+ + *| BAR4 | | BAR4 | + *+-----------------+ +-----------------+ + *| BAR5 | | BAR5 | + *+-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). + * This function can get the exact BAR used for peer scratchpad from + * epf_ntb_bar[BAR_PEER_SPAD]. + * + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function + * gets the address of peer scratchpad from + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. + */ +static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc) +{ + struct pci_epf_bar *epf_bar; + enum pci_barno barno; + struct pci_epc *epc; + u8 func_no; + + epc = ntb_epc->epc; + func_no = ntb_epc->func_no; + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; + epf_bar = &ntb_epc->epf_bar[barno]; + pci_epc_clear_bar(epc, func_no, epf_bar); +} + +/** + * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + *+-----------------+------->+------------------+ +-----------------+ + *| BAR0 | | CONFIG REGION | | BAR0 | + *+-----------------+----+ +------------------+<-------+-----------------+ + *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | + *+-----------------+ +-->+------------------+<-------+-----------------+ + *| BAR2 | Local Memory | BAR2 | + *+-----------------+ +-----------------+ + *| BAR3 | | BAR3 | + *+-----------------+ +-----------------+ + *| BAR4 | | BAR4 | + *+-----------------+ +-----------------+ + *| BAR5 | | BAR5 | + *+-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad + * region. While BAR1 is the default peer scratchpad BAR, an NTB could have + * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). + * This function can get the exact BAR used for peer scratchpad from + * epf_ntb_bar[BAR_PEER_SPAD]. + * + * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function + * gets the address of peer scratchpad from + * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. + */ +static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *peer_epf_bar, *epf_bar; + enum pci_barno peer_barno, barno; + u32 peer_spad_offset; + struct pci_epc *epc; + struct device *dev; + u8 func_no; + int ret; + + dev = &ntb->epf->dev; + + peer_ntb_epc = ntb->epc[!type]; + peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]; + peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; + + ntb_epc = ntb->epc[type]; + barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; + epf_bar = &ntb_epc->epf_bar[barno]; + func_no = ntb_epc->func_no; + epc = ntb_epc->epc; + + peer_spad_offset = peer_ntb_epc->reg->spad_offset; + epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset; + epf_bar->size = peer_ntb_epc->spad_size; + epf_bar->barno = barno; + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; + + ret = pci_epc_set_bar(epc, func_no, epf_bar); + if (ret) { + dev_err(dev, "%s intf: peer SPAD BAR set failed\n", + pci_epc_interface_string(type)); + return ret; + } + + return 0; +} + +/** + * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * +-----------------+------->+------------------+ +-----------------+ + * | BAR0 | | CONFIG REGION | | BAR0 | + * +-----------------+----+ +------------------+<-------+-----------------+ + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | + * +-----------------+ +-->+------------------+<-------+-----------------+ + * | BAR2 | Local Memory | BAR2 | + * +-----------------+ +-----------------+ + * | BAR3 | | BAR3 | + * +-----------------+ +-----------------+ + * | BAR4 | | BAR4 | + * +-----------------+ +-----------------+ + * | BAR5 | | BAR5 | + * +-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and + * self scratchpad region (removes inbound ATU configuration). While BAR0 is + * the default self scratchpad BAR, an NTB could have other BARs for self + * scratchpad (because of reserved BARs). This function can get the exact BAR + * used for self scratchpad from epf_ntb_bar[BAR_CONFIG]. + * + * Please note the self scratchpad region and config region is combined to + * a single region and mapped using the same BAR. Also note HOST2's peer + * scratchpad is HOST1's self scratchpad. + */ +static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc) +{ + struct pci_epf_bar *epf_bar; + enum pci_barno barno; + struct pci_epc *epc; + u8 func_no; + + epc = ntb_epc->epc; + func_no = ntb_epc->func_no; + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; + epf_bar = &ntb_epc->epf_bar[barno]; + pci_epc_clear_bar(epc, func_no, epf_bar); +} + +/** + * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * +-----------------+------->+------------------+ +-----------------+ + * | BAR0 | | CONFIG REGION | | BAR0 | + * +-----------------+----+ +------------------+<-------+-----------------+ + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | + * +-----------------+ +-->+------------------+<-------+-----------------+ + * | BAR2 | Local Memory | BAR2 | + * +-----------------+ +-----------------+ + * | BAR3 | | BAR3 | + * +-----------------+ +-----------------+ + * | BAR4 | | BAR4 | + * +-----------------+ +-----------------+ + * | BAR5 | | BAR5 | + * +-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and + * self scratchpad region. While BAR0 is the default self scratchpad BAR, an + * NTB could have other BARs for self scratchpad (because of reserved BARs). + * This function can get the exact BAR used for self scratchpad from + * epf_ntb_bar[BAR_CONFIG]. + * + * Please note the self scratchpad region and config region is combined to + * a single region and mapped using the same BAR. Also note HOST2's peer + * scratchpad is HOST1's self scratchpad. + */ +static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc) +{ + struct pci_epf_bar *epf_bar; + enum pci_barno barno; + struct epf_ntb *ntb; + struct pci_epc *epc; + struct device *dev; + u8 func_no; + int ret; + + ntb = ntb_epc->epf_ntb; + dev = &ntb->epf->dev; + + epc = ntb_epc->epc; + func_no = ntb_epc->func_no; + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; + epf_bar = &ntb_epc->epf_bar[barno]; + + ret = pci_epc_set_bar(epc, func_no, epf_bar); + if (ret) { + dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n", + pci_epc_interface_string(ntb_epc->type)); + return ret; + } + + return 0; +} + +/** + * epf_ntb_config_spad_bar_free() - Free the physical memory associated with + * config + scratchpad region + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * +-----------------+------->+------------------+ +-----------------+ + * | BAR0 | | CONFIG REGION | | BAR0 | + * +-----------------+----+ +------------------+<-------+-----------------+ + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | + * +-----------------+ +-->+------------------+<-------+-----------------+ + * | BAR2 | Local Memory | BAR2 | + * +-----------------+ +-----------------+ + * | BAR3 | | BAR3 | + * +-----------------+ +-----------------+ + * | BAR4 | | BAR4 | + * +-----------------+ +-----------------+ + * | BAR5 | | BAR5 | + * +-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Free the Local Memory mentioned in the above diagram. After invoking this + * function, any of config + self scratchpad region of HOST1 or peer scratchpad + * region of HOST2 should not be accessed. + */ +static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + struct epf_ntb_epc *ntb_epc; + enum pci_barno barno; + struct pci_epf *epf; + + epf = ntb->epf; + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { + ntb_epc = ntb->epc[type]; + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; + if (ntb_epc->reg) + pci_epf_free_space(epf, ntb_epc->reg, barno, type); + } +} + +/** + * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad + * region + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * +-----------------+------->+------------------+ +-----------------+ + * | BAR0 | | CONFIG REGION | | BAR0 | + * +-----------------+----+ +------------------+<-------+-----------------+ + * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | + * +-----------------+ +-->+------------------+<-------+-----------------+ + * | BAR2 | Local Memory | BAR2 | + * +-----------------+ +-----------------+ + * | BAR3 | | BAR3 | + * +-----------------+ +-----------------+ + * | BAR4 | | BAR4 | + * +-----------------+ +-----------------+ + * | BAR5 | | BAR5 | + * +-----------------+ +-----------------+ + * EP CONTROLLER 1 EP CONTROLLER 2 + * + * Allocate the Local Memory mentioned in the above diagram. The size of + * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION + * is obtained from "spad-count" configfs entry. + * + * The size of both config region and scratchpad region has to be aligned, + * since the scratchpad region will also be mapped as PEER SCRATCHPAD of + * other host using a separate BAR. + */ +static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + const struct pci_epc_features *peer_epc_features, *epc_features; + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + size_t msix_table_size, pba_size, align; + enum pci_barno peer_barno, barno; + struct epf_ntb_ctrl *ctrl; + u32 spad_size, ctrl_size; + u64 size, peer_size; + struct pci_epf *epf; + struct device *dev; + bool msix_capable; + u32 spad_count; + void *base; + + epf = ntb->epf; + dev = &epf->dev; + ntb_epc = ntb->epc[type]; + + epc_features = ntb_epc->epc_features; + barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; + size = epc_features->bar_fixed_size[barno]; + align = epc_features->align; + + peer_ntb_epc = ntb->epc[!type]; + peer_epc_features = peer_ntb_epc->epc_features; + peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; + peer_size = peer_epc_features->bar_fixed_size[peer_barno]; + + /* Check if epc_features is populated incorrectly */ + if ((!IS_ALIGNED(size, align))) + return -EINVAL; + + spad_count = ntb->spad_count; + + ctrl_size = sizeof(struct epf_ntb_ctrl); + spad_size = spad_count * 4; + + msix_capable = epc_features->msix_capable; + if (msix_capable) { + msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count; + ctrl_size = ALIGN(ctrl_size, 8); + ntb_epc->msix_table_offset = ctrl_size; + ntb_epc->msix_bar = barno; + /* Align to QWORD or 8 Bytes */ + pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8); + ctrl_size = ctrl_size + msix_table_size + pba_size; + } + + if (!align) { + ctrl_size = roundup_pow_of_two(ctrl_size); + spad_size = roundup_pow_of_two(spad_size); + } else { + ctrl_size = ALIGN(ctrl_size, align); + spad_size = ALIGN(spad_size, align); + } + + if (peer_size) { + if (peer_size < spad_size) + spad_count = peer_size / 4; + spad_size = peer_size; + } + + /* + * In order to make sure SPAD offset is aligned to its size, + * expand control region size to the size of SPAD if SPAD size + * is greater than control region size. + */ + if (spad_size > ctrl_size) + ctrl_size = spad_size; + + if (!size) + size = ctrl_size + spad_size; + else if (size < ctrl_size + spad_size) + return -EINVAL; + + base = pci_epf_alloc_space(epf, size, barno, align, type); + if (!base) { + dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n", + pci_epc_interface_string(type)); + return -ENOMEM; + } + + ntb_epc->reg = base; + + ctrl = ntb_epc->reg; + ctrl->spad_offset = ctrl_size; + ctrl->spad_count = spad_count; + ctrl->num_mws = ntb->num_mws; + ctrl->db_entry_size = align ? align : 4; + ntb_epc->spad_size = spad_size; + + return 0; +} + +/** + * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config + + * scratchpad region for each of PRIMARY and SECONDARY interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for + * config + scratchpad region for a specific interface + */ +static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + struct device *dev; + int ret; + + dev = &ntb->epf->dev; + + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { + ret = epf_ntb_config_spad_bar_alloc(ntb, type); + if (ret) { + dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n", + pci_epc_interface_string(type)); + return ret; + } + } + + return 0; +} + +/** + * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address + * space + * @ntb_epc: EPC associated with one of the HOST which holds peers outbound + * address regions + * + * +-----------------+ +---->+----------------+-----------+-----------------+ + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | + * +-----------------+ | +----------------+ +-----------------+ + * | BAR1 | | | Doorbell 2 +---------+ | | + * +-----------------+----+ +----------------+ | | | + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ + * +-----------------+ | |----------------+ | | | | + * | BAR4 | | | | | | +-----------------+ + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| + * | BAR5 | | | | | | +-----------------+ + * +-----------------+ +---->-----------------+ | | | | + * EP CONTROLLER 1 | | | | +-----------------+ + * | | | +---->+ MSI|X ADDRESS 4 | + * +----------------+ | +-----------------+ + * (A) EP CONTROLLER 2 | | | + * (OB SPACE) | | | + * +-------> MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram. + * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, + * MW4). + */ +static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc) +{ + struct pci_epf_bar *epf_bar; + void __iomem *mw_addr; + phys_addr_t phys_addr; + enum epf_ntb_bar bar; + enum pci_barno barno; + struct pci_epc *epc; + size_t size; + + epc = ntb_epc->epc; + + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { + barno = ntb_epc->epf_ntb_bar[bar]; + mw_addr = ntb_epc->mw_addr[barno]; + epf_bar = &ntb_epc->epf_bar[barno]; + phys_addr = epf_bar->phys_addr; + size = epf_bar->size; + if (mw_addr) { + pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size); + ntb_epc->mw_addr[barno] = NULL; + } + } +} + +/** + * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR + * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound + * address + * + * +-----------------+ +---->+----------------+-----------+-----------------+ + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | + * +-----------------+ | +----------------+ +-----------------+ + * | BAR1 | | | Doorbell 2 +---------+ | | + * +-----------------+----+ +----------------+ | | | + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ + * +-----------------+ | |----------------+ | | | | + * | BAR4 | | | | | | +-----------------+ + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| + * | BAR5 | | | | | | +-----------------+ + * +-----------------+ +---->-----------------+ | | | | + * EP CONTROLLER 1 | | | | +-----------------+ + * | | | +---->+ MSI|X ADDRESS 4 | + * +----------------+ | +-----------------+ + * (A) EP CONTROLLER 2 | | | + * (OB SPACE) | | | + * +-------> MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above + * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2 + * BAR, MW3 BAR and MW4 BAR). + */ +static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc) +{ + struct pci_epf_bar *epf_bar; + enum epf_ntb_bar bar; + enum pci_barno barno; + struct pci_epc *epc; + u8 func_no; + + epc = ntb_epc->epc; + + func_no = ntb_epc->func_no; + + for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { + barno = ntb_epc->epf_ntb_bar[bar]; + epf_bar = &ntb_epc->epf_bar[barno]; + pci_epc_clear_bar(epc, func_no, epf_bar); + } +} + +/** + * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory + * allocated in peers outbound address space + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and + * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory. + */ +static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + + ntb_epc = ntb->epc[type]; + peer_ntb_epc = ntb->epc[!type]; + + epf_ntb_db_mw_bar_clear(ntb_epc); + epf_ntb_free_peer_mem(peer_ntb_epc); +} + +/** + * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Configure MSI/MSI-X capability for each interface with number of + * interrupts equal to "db_count" configfs entry. + */ +static int epf_ntb_configure_interrupt(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + const struct pci_epc_features *epc_features; + bool msix_capable, msi_capable; + struct epf_ntb_epc *ntb_epc; + struct pci_epc *epc; + struct device *dev; + u32 db_count; + u8 func_no; + int ret; + + ntb_epc = ntb->epc[type]; + dev = &ntb->epf->dev; + + epc_features = ntb_epc->epc_features; + msix_capable = epc_features->msix_capable; + msi_capable = epc_features->msi_capable; + + if (!(msix_capable || msi_capable)) { + dev_err(dev, "MSI or MSI-X is required for doorbell\n"); + return -EINVAL; + } + + func_no = ntb_epc->func_no; + + db_count = ntb->db_count; + if (db_count > MAX_DB_COUNT) { + dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT); + return -EINVAL; + } + + ntb->db_count = db_count; + epc = ntb_epc->epc; + + if (msi_capable) { + ret = pci_epc_set_msi(epc, func_no, db_count); + if (ret) { + dev_err(dev, "%s intf: MSI configuration failed\n", + pci_epc_interface_string(type)); + return ret; + } + } + + if (msix_capable) { + ret = pci_epc_set_msix(epc, func_no, db_count, + ntb_epc->msix_bar, + ntb_epc->msix_table_offset); + if (ret) { + dev_err(dev, "MSI configuration failed\n"); + return ret; + } + } + + return 0; +} + +/** + * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space + * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound + * address + * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be + * BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4) + * @peer_ntb_epc: EPC associated with HOST whose outbound address space is + * used by @ntb_epc + * @size: Size of the address region that has to be allocated in peers OB SPACE + * + * + * +-----------------+ +---->+----------------+-----------+-----------------+ + * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | + * +-----------------+ | +----------------+ +-----------------+ + * | BAR1 | | | Doorbell 2 +---------+ | | + * +-----------------+----+ +----------------+ | | | + * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ + * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | + * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ + * +-----------------+ | |----------------+ | | | | + * | BAR4 | | | | | | +-----------------+ + * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| + * | BAR5 | | | | | | +-----------------+ + * +-----------------+ +---->-----------------+ | | | | + * EP CONTROLLER 1 | | | | +-----------------+ + * | | | +---->+ MSI|X ADDRESS 4 | + * +----------------+ | +-----------------+ + * (A) EP CONTROLLER 2 | | | + * (OB SPACE) | | | + * +-------> MW1 | + * | | + * | | + * (B) +-----------------+ + * | | + * | | + * | | + * | | + * | | + * +-----------------+ + * PCI Address Space + * (Managed by HOST2) + * + * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate + * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4). + */ +static int epf_ntb_alloc_peer_mem(struct device *dev, + struct epf_ntb_epc *ntb_epc, + enum epf_ntb_bar bar, + struct epf_ntb_epc *peer_ntb_epc, + size_t size) +{ + const struct pci_epc_features *epc_features; + struct pci_epf_bar *epf_bar; + struct pci_epc *peer_epc; + phys_addr_t phys_addr; + void __iomem *mw_addr; + enum pci_barno barno; + size_t align; + + epc_features = ntb_epc->epc_features; + align = epc_features->align; + + if (size < 128) + size = 128; + + if (align) + size = ALIGN(size, align); + else + size = roundup_pow_of_two(size); + + peer_epc = peer_ntb_epc->epc; + mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size); + if (!mw_addr) { + dev_err(dev, "%s intf: Failed to allocate OB address\n", + pci_epc_interface_string(peer_ntb_epc->type)); + return -ENOMEM; + } + + barno = ntb_epc->epf_ntb_bar[bar]; + epf_bar = &ntb_epc->epf_bar[barno]; + ntb_epc->mw_addr[barno] = mw_addr; + + epf_bar->phys_addr = phys_addr; + epf_bar->size = size; + epf_bar->barno = barno; + epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; + + return 0; +} + +/** + * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates + * memory in OB address space of HOST2 and configures BAR of HOST1 + */ +static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + const struct pci_epc_features *epc_features; + struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; + struct pci_epf_bar *epf_bar; + struct epf_ntb_ctrl *ctrl; + u32 num_mws, db_count; + enum epf_ntb_bar bar; + enum pci_barno barno; + struct pci_epc *epc; + struct device *dev; + size_t align; + int ret, i; + u8 func_no; + u64 size; + + ntb_epc = ntb->epc[type]; + peer_ntb_epc = ntb->epc[!type]; + + dev = &ntb->epf->dev; + epc_features = ntb_epc->epc_features; + align = epc_features->align; + func_no = ntb_epc->func_no; + epc = ntb_epc->epc; + num_mws = ntb->num_mws; + db_count = ntb->db_count; + + for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) { + if (bar == BAR_DB_MW1) { + align = align ? align : 4; + size = db_count * align; + size = ALIGN(size, ntb->mws_size[i]); + ctrl = ntb_epc->reg; + ctrl->mw1_offset = size; + size += ntb->mws_size[i]; + } else { + size = ntb->mws_size[i]; + } + + ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar, + peer_ntb_epc, size); + if (ret) { + dev_err(dev, "%s intf: DoorBell mem alloc failed\n", + pci_epc_interface_string(type)); + goto err_alloc_peer_mem; + } + + barno = ntb_epc->epf_ntb_bar[bar]; + epf_bar = &ntb_epc->epf_bar[barno]; + + ret = pci_epc_set_bar(epc, func_no, epf_bar); + if (ret) { + dev_err(dev, "%s intf: DoorBell BAR set failed\n", + pci_epc_interface_string(type)); + goto err_alloc_peer_mem; + } + } + + return 0; + +err_alloc_peer_mem: + epf_ntb_db_mw_bar_cleanup(ntb, type); + + return ret; +} + +/** + * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Unbind NTB function device from EPC and relinquish reference to pci_epc + * for each of the interface. + */ +static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *ntb_epc; + struct pci_epc *epc; + struct pci_epf *epf; + + if (type < 0) + return; + + epf = ntb->epf; + ntb_epc = ntb->epc[type]; + if (!ntb_epc) + return; + epc = ntb_epc->epc; + pci_epc_remove_epf(epc, epf, type); + pci_epc_put(epc); +} + +/** + * epf_ntb_epc_destroy() - Cleanup NTB EPC interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces + */ +static void epf_ntb_epc_destroy(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) + epf_ntb_epc_destroy_interface(ntb, type); +} + +/** + * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @epc: struct pci_epc to which a particular NTB interface should be associated + * @type: PRIMARY interface or SECONDARY interface + * + * Allocate memory for NTB EPC interface and initialize it. + */ +static int epf_ntb_epc_create_interface(struct epf_ntb *ntb, + struct pci_epc *epc, + enum pci_epc_interface_type type) +{ + const struct pci_epc_features *epc_features; + struct pci_epf_bar *epf_bar; + struct epf_ntb_epc *ntb_epc; + struct pci_epf *epf; + struct device *dev; + u8 func_no; + + dev = &ntb->epf->dev; + + ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL); + if (!ntb_epc) + return -ENOMEM; + + epf = ntb->epf; + if (type == PRIMARY_INTERFACE) { + func_no = epf->func_no; + epf_bar = epf->bar; + } else { + func_no = epf->sec_epc_func_no; + epf_bar = epf->sec_epc_bar; + } + + ntb_epc->linkup = false; + ntb_epc->epc = epc; + ntb_epc->func_no = func_no; + ntb_epc->type = type; + ntb_epc->epf_bar = epf_bar; + ntb_epc->epf_ntb = ntb; + + epc_features = pci_epc_get_features(epc, func_no); + if (!epc_features) + return -EINVAL; + ntb_epc->epc_features = epc_features; + + ntb->epc[type] = ntb_epc; + + return 0; +} + +/** + * epf_ntb_epc_create() - Create and initialize NTB EPC interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * Get a reference to EPC device and bind NTB function device to that EPC + * for each of the interface. It is also a wrapper to + * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface + * and initialize it + */ +static int epf_ntb_epc_create(struct epf_ntb *ntb) +{ + struct pci_epf *epf; + struct device *dev; + int ret; + + epf = ntb->epf; + dev = &epf->dev; + + ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE); + if (ret) { + dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n"); + return ret; + } + + ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc, + SECONDARY_INTERFACE); + if (ret) { + dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n"); + goto err_epc_create; + } + + return 0; + +err_epc_create: + epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE); + + return ret; +} + +/** + * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of + * the NTB constructs (scratchpad region, doorbell, memorywindow) + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD, + * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4. + */ +static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + const struct pci_epc_features *epc_features; + struct epf_ntb_epc *ntb_epc; + enum pci_barno barno; + enum epf_ntb_bar bar; + struct device *dev; + u32 num_mws; + int i; + + barno = BAR_0; + ntb_epc = ntb->epc[type]; + num_mws = ntb->num_mws; + dev = &ntb->epf->dev; + epc_features = ntb_epc->epc_features; + + /* These are required BARs which are mandatory for NTB functionality */ + for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) { + barno = pci_epc_get_next_free_bar(epc_features, barno); + if (barno < 0) { + dev_err(dev, "%s intf: Fail to get NTB function BAR\n", + pci_epc_interface_string(type)); + return barno; + } + ntb_epc->epf_ntb_bar[bar] = barno; + } + + /* These are optional BARs which don't impact NTB functionality */ + for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) { + barno = pci_epc_get_next_free_bar(epc_features, barno); + if (barno < 0) { + ntb->num_mws = i; + dev_dbg(dev, "BAR not available for > MW%d\n", i + 1); + } + ntb_epc->epf_ntb_bar[bar] = barno; + } + + return 0; +} + +/** + * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB + * constructs (scratchpad region, doorbell, memorywindow) + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs + * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2, + * BAR_MW3 and BAR_MW4 for all the interfaces. + */ +static int epf_ntb_init_epc_bar(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + struct device *dev; + int ret; + + dev = &ntb->epf->dev; + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { + ret = epf_ntb_init_epc_bar_interface(ntb, type); + if (ret) { + dev_err(dev, "Fail to init EPC bar for %s interface\n", + pci_epc_interface_string(type)); + return ret; + } + } + + return 0; +} + +/** + * epf_ntb_epc_init_interface() - Initialize NTB interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Wrapper to initialize a particular EPC interface and start the workqueue + * to check for commands from host. This function will write to the + * EP controller HW for configuring it. + */ +static int epf_ntb_epc_init_interface(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *ntb_epc; + struct pci_epc *epc; + struct pci_epf *epf; + struct device *dev; + u8 func_no; + int ret; + + ntb_epc = ntb->epc[type]; + epf = ntb->epf; + dev = &epf->dev; + epc = ntb_epc->epc; + func_no = ntb_epc->func_no; + + ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]); + if (ret) { + dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n", + pci_epc_interface_string(type)); + return ret; + } + + ret = epf_ntb_peer_spad_bar_set(ntb, type); + if (ret) { + dev_err(dev, "%s intf: Peer SPAD BAR init failed\n", + pci_epc_interface_string(type)); + goto err_peer_spad_bar_init; + } + + ret = epf_ntb_configure_interrupt(ntb, type); + if (ret) { + dev_err(dev, "%s intf: Interrupt configuration failed\n", + pci_epc_interface_string(type)); + goto err_peer_spad_bar_init; + } + + ret = epf_ntb_db_mw_bar_init(ntb, type); + if (ret) { + dev_err(dev, "%s intf: DB/MW BAR init failed\n", + pci_epc_interface_string(type)); + goto err_db_mw_bar_init; + } + + ret = pci_epc_write_header(epc, func_no, epf->header); + if (ret) { + dev_err(dev, "%s intf: Configuration header write failed\n", + pci_epc_interface_string(type)); + goto err_write_header; + } + + INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler); + queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work); + + return 0; + +err_write_header: + epf_ntb_db_mw_bar_cleanup(ntb, type); + +err_db_mw_bar_init: + epf_ntb_peer_spad_bar_clear(ntb->epc[type]); + +err_peer_spad_bar_init: + epf_ntb_config_sspad_bar_clear(ntb->epc[type]); + + return ret; +} + +/** + * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * @type: PRIMARY interface or SECONDARY interface + * + * Wrapper to cleanup a particular NTB interface. + */ +static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb, + enum pci_epc_interface_type type) +{ + struct epf_ntb_epc *ntb_epc; + + if (type < 0) + return; + + ntb_epc = ntb->epc[type]; + cancel_delayed_work(&ntb_epc->cmd_handler); + epf_ntb_db_mw_bar_cleanup(ntb, type); + epf_ntb_peer_spad_bar_clear(ntb_epc); + epf_ntb_config_sspad_bar_clear(ntb_epc); +} + +/** + * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * Wrapper to cleanup all NTB interfaces. + */ +static void epf_ntb_epc_cleanup(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) + epf_ntb_epc_cleanup_interface(ntb, type); +} + +/** + * epf_ntb_epc_init() - Initialize all NTB interfaces + * @ntb: NTB device that facilitates communication between HOST1 and HOST2 + * + * Wrapper to initialize all NTB interface and start the workqueue + * to check for commands from host. + */ +static int epf_ntb_epc_init(struct epf_ntb *ntb) +{ + enum pci_epc_interface_type type; + struct device *dev; + int ret; + + dev = &ntb->epf->dev; + + for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { + ret = epf_ntb_epc_init_interface(ntb, type); + if (ret) { + dev_err(dev, "%s intf: Failed to initialize\n", + pci_epc_interface_string(type)); + goto err_init_type; + } + } + + return 0; + +err_init_type: + epf_ntb_epc_cleanup_interface(ntb, type - 1); + + return ret; +} + +/** + * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality + * @epf: NTB endpoint function device + * + * Initialize both the endpoint controllers associated with NTB function device. + * Invoked when a primary interface or secondary interface is bound to EPC + * device. This function will succeed only when EPC is bound to both the + * interfaces. + */ +static int epf_ntb_bind(struct pci_epf *epf) +{ + struct epf_ntb *ntb = epf_get_drvdata(epf); + struct device *dev = &epf->dev; + int ret; + + if (!epf->epc) { + dev_dbg(dev, "PRIMARY EPC interface not yet bound\n"); + return 0; + } + + if (!epf->sec_epc) { + dev_dbg(dev, "SECONDARY EPC interface not yet bound\n"); + return 0; + } + + ret = epf_ntb_epc_create(ntb); + if (ret) { + dev_err(dev, "Failed to create NTB EPC\n"); + return ret; + } + + ret = epf_ntb_init_epc_bar(ntb); + if (ret) { + dev_err(dev, "Failed to create NTB EPC\n"); + goto err_bar_init; + } + + ret = epf_ntb_config_spad_bar_alloc_interface(ntb); + if (ret) { + dev_err(dev, "Failed to allocate BAR memory\n"); + goto err_bar_alloc; + } + + ret = epf_ntb_epc_init(ntb); + if (ret) { + dev_err(dev, "Failed to initialize EPC\n"); + goto err_bar_alloc; + } + + epf_set_drvdata(epf, ntb); + + return 0; + +err_bar_alloc: + epf_ntb_config_spad_bar_free(ntb); + +err_bar_init: + epf_ntb_epc_destroy(ntb); + + return ret; +} + +/** + * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind() + * @epf: NTB endpoint function device + * + * Cleanup the initialization from epf_ntb_bind() + */ +static void epf_ntb_unbind(struct pci_epf *epf) +{ + struct epf_ntb *ntb = epf_get_drvdata(epf); + + epf_ntb_epc_cleanup(ntb); + epf_ntb_config_spad_bar_free(ntb); + epf_ntb_epc_destroy(ntb); +} + +#define EPF_NTB_R(_name) \ +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ + char *page) \ +{ \ + struct config_group *group = to_config_group(item); \ + struct epf_ntb *ntb = to_epf_ntb(group); \ + \ + return sprintf(page, "%d\n", ntb->_name); \ +} + +#define EPF_NTB_W(_name) \ +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ + const char *page, size_t len) \ +{ \ + struct config_group *group = to_config_group(item); \ + struct epf_ntb *ntb = to_epf_ntb(group); \ + u32 val; \ + int ret; \ + \ + ret = kstrtou32(page, 0, &val); \ + if (ret) \ + return ret; \ + \ + ntb->_name = val; \ + \ + return len; \ +} + +#define EPF_NTB_MW_R(_name) \ +static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ + char *page) \ +{ \ + struct config_group *group = to_config_group(item); \ + struct epf_ntb *ntb = to_epf_ntb(group); \ + int win_no; \ + \ + sscanf(#_name, "mw%d", &win_no); \ + \ + return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \ +} + +#define EPF_NTB_MW_W(_name) \ +static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ + const char *page, size_t len) \ +{ \ + struct config_group *group = to_config_group(item); \ + struct epf_ntb *ntb = to_epf_ntb(group); \ + struct device *dev = &ntb->epf->dev; \ + int win_no; \ + u64 val; \ + int ret; \ + \ + ret = kstrtou64(page, 0, &val); \ + if (ret) \ + return ret; \ + \ + if (sscanf(#_name, "mw%d", &win_no) != 1) \ + return -EINVAL; \ + \ + if (ntb->num_mws < win_no) { \ + dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \ + return -EINVAL; \ + } \ + \ + ntb->mws_size[win_no - 1] = val; \ + \ + return len; \ +} + +static ssize_t epf_ntb_num_mws_store(struct config_item *item, + const char *page, size_t len) +{ + struct config_group *group = to_config_group(item); + struct epf_ntb *ntb = to_epf_ntb(group); + u32 val; + int ret; + + ret = kstrtou32(page, 0, &val); + if (ret) + return ret; + + if (val > MAX_MW) + return -EINVAL; + + ntb->num_mws = val; + + return len; +} + +EPF_NTB_R(spad_count) +EPF_NTB_W(spad_count) +EPF_NTB_R(db_count) +EPF_NTB_W(db_count) +EPF_NTB_R(num_mws) +EPF_NTB_MW_R(mw1) +EPF_NTB_MW_W(mw1) +EPF_NTB_MW_R(mw2) +EPF_NTB_MW_W(mw2) +EPF_NTB_MW_R(mw3) +EPF_NTB_MW_W(mw3) +EPF_NTB_MW_R(mw4) +EPF_NTB_MW_W(mw4) + +CONFIGFS_ATTR(epf_ntb_, spad_count); +CONFIGFS_ATTR(epf_ntb_, db_count); +CONFIGFS_ATTR(epf_ntb_, num_mws); +CONFIGFS_ATTR(epf_ntb_, mw1); +CONFIGFS_ATTR(epf_ntb_, mw2); +CONFIGFS_ATTR(epf_ntb_, mw3); +CONFIGFS_ATTR(epf_ntb_, mw4); + +static struct configfs_attribute *epf_ntb_attrs[] = { + &epf_ntb_attr_spad_count, + &epf_ntb_attr_db_count, + &epf_ntb_attr_num_mws, + &epf_ntb_attr_mw1, + &epf_ntb_attr_mw2, + &epf_ntb_attr_mw3, + &epf_ntb_attr_mw4, + NULL, +}; + +static const struct config_item_type ntb_group_type = { + .ct_attrs = epf_ntb_attrs, + .ct_owner = THIS_MODULE, +}; + +/** + * epf_ntb_add_cfs() - Add configfs directory specific to NTB + * @epf: NTB endpoint function device + * + * Add configfs directory specific to NTB. This directory will hold + * NTB specific properties like db_count, spad_count, num_mws etc., + */ +static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf, + struct config_group *group) +{ + struct epf_ntb *ntb = epf_get_drvdata(epf); + struct config_group *ntb_group = &ntb->group; + struct device *dev = &epf->dev; + + config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type); + + return ntb_group; +} + +/** + * epf_ntb_probe() - Probe NTB function driver + * @epf: NTB endpoint function device + * + * Probe NTB function driver when endpoint function bus detects a NTB + * endpoint function. + */ +static int epf_ntb_probe(struct pci_epf *epf) +{ + struct epf_ntb *ntb; + struct device *dev; + + dev = &epf->dev; + + ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL); + if (!ntb) + return -ENOMEM; + + epf->header = &epf_ntb_header; + ntb->epf = epf; + epf_set_drvdata(epf, ntb); + + return 0; +} + +static struct pci_epf_ops epf_ntb_ops = { + .bind = epf_ntb_bind, + .unbind = epf_ntb_unbind, + .add_cfs = epf_ntb_add_cfs, +}; + +static const struct pci_epf_device_id epf_ntb_ids[] = { + { + .name = "pci_epf_ntb", + }, + {}, +}; + +static struct pci_epf_driver epf_ntb_driver = { + .driver.name = "pci_epf_ntb", + .probe = epf_ntb_probe, + .id_table = epf_ntb_ids, + .ops = &epf_ntb_ops, + .owner = THIS_MODULE, +}; + +static int __init epf_ntb_init(void) +{ + int ret; + + kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM | + WQ_HIGHPRI, 0); + ret = pci_epf_register_driver(&epf_ntb_driver); + if (ret) { + destroy_workqueue(kpcintb_workqueue); + pr_err("Failed to register pci epf ntb driver --> %d\n", ret); + return ret; + } + + return 0; +} +module_init(epf_ntb_init); + +static void __exit epf_ntb_exit(void) +{ + pci_epf_unregister_driver(&epf_ntb_driver); + destroy_workqueue(kpcintb_workqueue); +} +module_exit(epf_ntb_exit); + +MODULE_DESCRIPTION("PCI EPF NTB DRIVER"); +MODULE_AUTHOR("Kishon Vijay Abraham I "); +MODULE_LICENSE("GPL v2"); -- cgit v1.2.3