// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #include "../habanalabs.h" #include "../../include/hw_ip/mmu/mmu_general.h" #include static struct pgt_info *hl_mmu_v2_hr_get_pgt_info(struct hl_ctx *ctx, u64 phys_hop_addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->hr_mmu_phys_hash, pgt_info, node, (unsigned long) phys_hop_addr) if (phys_hop_addr == pgt_info->phys_addr) break; return pgt_info; } static void hl_mmu_v2_hr_add_pgt_info(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr) { hash_add(ctx->hr_mmu_phys_hash, &pgt_info->node, phys_addr); } static struct pgt_info *hl_mmu_v2_hr_get_hop0_pgt_info(struct hl_ctx *ctx) { return &ctx->hdev->mmu_priv.hr.mmu_asid_hop0[ctx->asid]; } /** * hl_mmu_v2_hr_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Create a pool of pages for pgt_infos. * - Create a shadow table for pgt * * Return: 0 for success, non-zero for failure. */ static inline int hl_mmu_v2_hr_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; return hl_mmu_hr_init(hdev, &hdev->mmu_priv.hr, prop->mmu_hop_table_size, prop->mmu_pgt_size); } /** * hl_mmu_v2_hr_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ static inline void hl_mmu_v2_hr_fini(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; hl_mmu_hr_fini(hdev, &hdev->mmu_priv.hr, prop->mmu_hop_table_size); } /** * hl_mmu_v2_hr_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ static int hl_mmu_v2_hr_ctx_init(struct hl_ctx *ctx) { hash_init(ctx->hr_mmu_phys_hash); return 0; } /* * hl_mmu_v2_hr_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ static void hl_mmu_v2_hr_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; if (!hash_empty(ctx->hr_mmu_phys_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->hr_mmu_phys_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); hl_mmu_hr_free_hop_remove_pgt(pgt_info, &ctx->hdev->mmu_priv.hr, ctx->hdev->asic_prop.mmu_hop_table_size); } } static int _hl_mmu_v2_hr_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { u64 curr_pte, scrambled_virt_addr, hop_pte_phys_addr[MMU_ARCH_6_HOPS] = { 0 }; struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop; struct hl_mmu_properties *mmu_prop; bool is_huge = false; int i, hop_last; prop = &hdev->asic_prop; /* shifts and masks are the same in PMMU and HMMU, use one of them */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; hop_last = mmu_prop->num_hops - 1; scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); curr_pte = 0; for (i = 0 ; i < mmu_prop->num_hops ; i++) { /* we get HOP0 differently, it doesn't need curr_pte */ if (i == 0) hops_pgt_info[i] = hl_mmu_v2_hr_get_hop0_pgt_info(ctx); else hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs, curr_pte); if (!hops_pgt_info[i]) goto not_mapped; hop_pte_phys_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops_pgt_info[i]->phys_addr, scrambled_virt_addr); if (hop_pte_phys_addr[i] == U64_MAX) return -EFAULT; curr_pte = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], hop_pte_phys_addr[i], ctx->hdev->asic_prop.mmu_hop_table_size); if ((i < hop_last) && (curr_pte & mmu_prop->last_mask)) { hop_last = i; is_huge = true; break; } } if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; for (i = hop_last ; i > 0 ; i--) { hl_mmu_hr_clear_pte(ctx, hops_pgt_info[i], hop_pte_phys_addr[i], ctx->hdev->asic_prop.mmu_hop_table_size); if (hl_mmu_hr_put_pte(ctx, hops_pgt_info[i], &ctx->hdev->mmu_priv.hr, ctx->hdev->asic_prop.mmu_hop_table_size)) goto mapped; } hl_mmu_hr_clear_pte(ctx, hops_pgt_info[0], hop_pte_phys_addr[0], ctx->hdev->asic_prop.mmu_hop_table_size); mapped: return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } static int hl_mmu_v2_get_last_hop(struct hl_mmu_properties *mmu_prop, u32 page_size) { int hop; for (hop = (mmu_prop->num_hops - 1); hop; hop--) { if (mmu_prop->hop_shifts[hop] == 0) continue; if (page_size <= (1 << mmu_prop->hop_shifts[hop])) break; } return hop; } static int _hl_mmu_v2_hr_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { u64 hop_pte_phys_addr[MMU_ARCH_6_HOPS] = { 0 }, curr_pte = 0, scrambled_virt_addr, scrambled_phys_addr; struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; bool hop_new[MMU_ARCH_6_HOPS] = { false }; struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; int i, hop_last, rc = -ENOMEM; /* * This mapping function can map a page or a huge page. For huge page * there are only 4 hops rather than 5. Currently the DRAM allocation * uses huge pages only but user memory could have been allocated with * one of the two page sizes. Since this is a common code for all the * three cases, we need this hugs page check. */ if (is_dram_addr) mmu_prop = &prop->dmmu; else if (page_size == prop->pmmu_huge.page_size) mmu_prop = &prop->pmmu_huge; else mmu_prop = &prop->pmmu; hop_last = hl_mmu_v2_get_last_hop(mmu_prop, page_size); if (hop_last <= 0) { dev_err(ctx->hdev->dev, "Invalid last HOP %d\n", hop_last); return -EFAULT; } scrambled_virt_addr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); scrambled_phys_addr = hdev->asic_funcs->scramble_addr(hdev, phys_addr); for (i = 0 ; i <= hop_last ; i++) { if (i == 0) hops_pgt_info[i] = hl_mmu_v2_hr_get_hop0_pgt_info(ctx); else hops_pgt_info[i] = hl_mmu_hr_get_alloc_next_hop(ctx, &ctx->hdev->mmu_priv.hr, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs, mmu_prop, curr_pte, &hop_new[i]); if (!hops_pgt_info[i]) goto err; hop_pte_phys_addr[i] = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops_pgt_info[i]->phys_addr, scrambled_virt_addr); curr_pte = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], hop_pte_phys_addr[i], ctx->hdev->asic_prop.mmu_hop_table_size); } if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", scrambled_virt_addr); for (i = 0 ; i <= hop_last ; i++) dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", i, *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], hop_pte_phys_addr[i], ctx->hdev->asic_prop.mmu_hop_table_size), hop_pte_phys_addr[i]); rc = -EINVAL; goto err; } curr_pte = (scrambled_phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; /* Write the PTEs */ hl_mmu_hr_write_pte(ctx, hops_pgt_info[hop_last], hop_pte_phys_addr[hop_last], curr_pte, ctx->hdev->asic_prop.mmu_hop_table_size); /* for each new hop, add its address to the table of previous-hop */ for (i = 1 ; i <= hop_last ; i++) { if (hop_new[i]) { curr_pte = (hops_pgt_info[i]->phys_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_hr_write_pte(ctx, hops_pgt_info[i - 1], hop_pte_phys_addr[i - 1], curr_pte, ctx->hdev->asic_prop.mmu_hop_table_size); if (i - 1) hl_mmu_hr_get_pte(ctx, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs, hops_pgt_info[i - 1]->phys_addr); } } hl_mmu_hr_get_pte(ctx, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs, hops_pgt_info[hop_last]->phys_addr); return 0; err: for (i = 1 ; i <= hop_last ; i++) if (hop_new[i] && hops_pgt_info[i]) hl_mmu_hr_free_hop_remove_pgt(hops_pgt_info[i], &ctx->hdev->mmu_priv.hr, ctx->hdev->asic_prop.mmu_hop_table_size); return rc; } /* * hl_mmu_v2_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_hr_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_v2_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ static void hl_mmu_v2_hr_swap_in(struct hl_ctx *ctx) { } static int hl_mmu_v2_hr_get_tlb_mapping_params(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, struct hl_mmu_hop_info *hops, u64 virt_addr, bool *is_huge) { struct asic_fixed_properties *prop = &hdev->asic_prop; bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, prop->pmmu.start_addr, prop->pmmu.end_addr); is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu_huge.page_size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr); if (is_dram_addr) { *mmu_prop = &prop->dmmu; *is_huge = true; hops->range_type = HL_VA_RANGE_TYPE_DRAM; } else if (is_pmmu_addr) { *mmu_prop = &prop->pmmu; *is_huge = false; hops->range_type = HL_VA_RANGE_TYPE_HOST; } else if (is_pmmu_h_addr) { *mmu_prop = &prop->pmmu_huge; *is_huge = true; hops->range_type = HL_VA_RANGE_TYPE_HOST_HUGE; } else { return -EINVAL; } return 0; } static int hl_mmu_v2_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { return hl_mmu_hr_get_tlb_info(ctx, virt_addr, hops, &ctx->hdev->mmu_func[MMU_HR_PGT].hr_funcs); } /* * hl_mmu_v2_prepare - prepare mmu_if for working with mmu v2 * * @hdev: pointer to the device structure * @mmu_if: pointer to the mmu interface structure */ void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) { mmu->init = hl_mmu_v2_hr_init; mmu->fini = hl_mmu_v2_hr_fini; mmu->ctx_init = hl_mmu_v2_hr_ctx_init; mmu->ctx_fini = hl_mmu_v2_hr_ctx_fini; mmu->map = _hl_mmu_v2_hr_map; mmu->unmap = _hl_mmu_v2_hr_unmap; mmu->flush = hl_mmu_hr_flush; mmu->swap_out = hl_mmu_v2_hr_swap_out; mmu->swap_in = hl_mmu_v2_hr_swap_in; mmu->get_tlb_info = hl_mmu_v2_hr_get_tlb_info; mmu->hr_funcs.get_hop0_pgt_info = hl_mmu_v2_hr_get_hop0_pgt_info; mmu->hr_funcs.get_pgt_info = hl_mmu_v2_hr_get_pgt_info; mmu->hr_funcs.add_pgt_info = hl_mmu_v2_hr_add_pgt_info; mmu->hr_funcs.get_tlb_mapping_params = hl_mmu_v2_hr_get_tlb_mapping_params; }