/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "bw_fixed.h" #define BITS_PER_FRACTIONAL_PART 24 #define MIN_I32 \ (int64_t)(-(1LL << (63 - BITS_PER_FRACTIONAL_PART))) #define MAX_I32 \ (int64_t)((1ULL << (63 - BITS_PER_FRACTIONAL_PART)) - 1) #define MIN_I64 \ (int64_t)(-(1LL << 63)) #define MAX_I64 \ (int64_t)((1ULL << 63) - 1) #define FRACTIONAL_PART_MASK \ ((1ULL << BITS_PER_FRACTIONAL_PART) - 1) #define GET_INTEGER_PART(x) \ ((x) >> BITS_PER_FRACTIONAL_PART) #define GET_FRACTIONAL_PART(x) \ (FRACTIONAL_PART_MASK & (x)) static uint64_t abs_i64(int64_t arg) { if (arg >= 0) return (uint64_t)(arg); else return (uint64_t)(-arg); } struct bw_fixed bw_min3(struct bw_fixed v1, struct bw_fixed v2, struct bw_fixed v3) { return bw_min2(bw_min2(v1, v2), v3); } struct bw_fixed bw_max3(struct bw_fixed v1, struct bw_fixed v2, struct bw_fixed v3) { return bw_max2(bw_max2(v1, v2), v3); } struct bw_fixed bw_int_to_fixed(int64_t value) { struct bw_fixed res; ASSERT(value < MAX_I32 && value > MIN_I32); res.value = value << BITS_PER_FRACTIONAL_PART; return res; } int32_t bw_fixed_to_int(struct bw_fixed value) { return GET_INTEGER_PART(value.value); } struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator) { struct bw_fixed res; bool arg1_negative = numerator < 0; bool arg2_negative = denominator < 0; uint64_t arg1_value; uint64_t arg2_value; uint64_t remainder; /* determine integer part */ uint64_t res_value; ASSERT(denominator != 0); arg1_value = abs_i64(numerator); arg2_value = abs_i64(denominator); res_value = div64_u64_rem(arg1_value, arg2_value, &remainder); ASSERT(res_value <= MAX_I32); /* determine fractional part */ { uint32_t i = BITS_PER_FRACTIONAL_PART; do { remainder <<= 1; res_value <<= 1; if (remainder >= arg2_value) { res_value |= 1; remainder -= arg2_value; } } while (--i != 0); } /* round up LSB */ { uint64_t summand = (remainder << 1) >= arg2_value; ASSERT(res_value <= MAX_I64 - summand); res_value += summand; } res.value = (int64_t)(res_value); if (arg1_negative ^ arg2_negative) res.value = -res.value; return res; } struct bw_fixed bw_min2(const struct bw_fixed arg1, const struct bw_fixed arg2) { return (arg1.value <= arg2.value) ? arg1 : arg2; } struct bw_fixed bw_max2(const struct bw_fixed arg1, const struct bw_fixed arg2) { return (arg2.value <= arg1.value) ? arg1 : arg2; } struct bw_fixed bw_floor2( const struct bw_fixed arg, const struct bw_fixed significance) { struct bw_fixed result; int64_t multiplicand; multiplicand = div64_s64(arg.value, abs_i64(significance.value)); result.value = abs_i64(significance.value) * multiplicand; ASSERT(abs_i64(result.value) <= abs_i64(arg.value)); return result; } struct bw_fixed bw_ceil2( const struct bw_fixed arg, const struct bw_fixed significance) { struct bw_fixed result; int64_t multiplicand; multiplicand = div64_s64(arg.value, abs_i64(significance.value)); result.value = abs_i64(significance.value) * multiplicand; if (abs_i64(result.value) < abs_i64(arg.value)) { if (arg.value < 0) result.value -= abs_i64(significance.value); else result.value += abs_i64(significance.value); } return result; } struct bw_fixed bw_add(const struct bw_fixed arg1, const struct bw_fixed arg2) { struct bw_fixed res; res.value = arg1.value + arg2.value; return res; } struct bw_fixed bw_sub(const struct bw_fixed arg1, const struct bw_fixed arg2) { struct bw_fixed res; res.value = arg1.value - arg2.value; return res; } struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2) { struct bw_fixed res; bool arg1_negative = arg1.value < 0; bool arg2_negative = arg2.value < 0; uint64_t arg1_value = abs_i64(arg1.value); uint64_t arg2_value = abs_i64(arg2.value); uint64_t arg1_int = GET_INTEGER_PART(arg1_value); uint64_t arg2_int = GET_INTEGER_PART(arg2_value); uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value); uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value); uint64_t tmp; res.value = arg1_int * arg2_int; ASSERT(res.value <= MAX_I32); res.value <<= BITS_PER_FRACTIONAL_PART; tmp = arg1_int * arg2_fra; ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); res.value += tmp; tmp = arg2_int * arg1_fra; ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); res.value += tmp; tmp = arg1_fra * arg2_fra; tmp = (tmp >> BITS_PER_FRACTIONAL_PART) + (tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value)); ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value)); res.value += tmp; if (arg1_negative ^ arg2_negative) res.value = -res.value; return res; } struct bw_fixed bw_div(const struct bw_fixed arg1, const struct bw_fixed arg2) { struct bw_fixed res = bw_frc_to_fixed(arg1.value, arg2.value); return res; } struct bw_fixed bw_mod(const struct bw_fixed arg1, const struct bw_fixed arg2) { struct bw_fixed res; div64_u64_rem(arg1.value, arg2.value, &res.value); return res; } struct bw_fixed fixed31_32_to_bw_fixed(int64_t raw) { struct bw_fixed result = { 0 }; if (raw < 0) { raw = -raw; result.value = -(raw >> (32 - BITS_PER_FRACTIONAL_PART)); } else { result.value = raw >> (32 - BITS_PER_FRACTIONAL_PART); } return result; } bool bw_equ(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value == arg2.value; } bool bw_neq(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value != arg2.value; } bool bw_leq(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value <= arg2.value; } bool bw_meq(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value >= arg2.value; } bool bw_ltn(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value < arg2.value; } bool bw_mtn(const struct bw_fixed arg1, const struct bw_fixed arg2) { return arg1.value > arg2.value; }