/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include "dm_services.h" #include "dc.h" #include "core_status.h" #include "core_types.h" #include "hw_sequencer.h" #include "resource.h" #include "clock_source.h" #include "dc_bios_types.h" #include "bandwidth_calcs.h" #include "bios_parser_interface.h" #include "include/irq_service_interface.h" #include "transform.h" #include "timing_generator.h" #include "virtual/virtual_link_encoder.h" #include "link_hwss.h" #include "link_encoder.h" #include "dc_link_ddc.h" #include "dm_helpers.h" #include "mem_input.h" /******************************************************************************* * Private structures ******************************************************************************/ struct dc_target_sync_report { uint32_t h_count; uint32_t v_count; }; /******************************************************************************* * Private functions ******************************************************************************/ static void destroy_links(struct core_dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) { if (NULL != dc->links[i]) link_destroy(&dc->links[i]); } } static bool create_links( struct core_dc *dc, uint32_t num_virtual_links) { int i; int connectors_num; struct dc_bios *bios = dc->ctx->dc_bios; dc->link_count = 0; connectors_num = bios->funcs->get_connectors_number(bios); if (connectors_num > ENUM_ID_COUNT) { dm_error( "DC: Number of connectors %d exceeds maximum of %d!\n", connectors_num, ENUM_ID_COUNT); return false; } if (connectors_num == 0 && num_virtual_links == 0) { dm_error("DC: Number of connectors is zero!\n"); } dm_output_to_console( "DC: %s: connectors_num: physical:%d, virtual:%d\n", __func__, connectors_num, num_virtual_links); for (i = 0; i < connectors_num; i++) { struct link_init_data link_init_params = {0}; struct core_link *link; link_init_params.ctx = dc->ctx; link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link = link_create(&link_init_params); if (link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } else { dm_error("DC: failed to create link!\n"); } } for (i = 0; i < num_virtual_links; i++) { struct core_link *link = dm_alloc(sizeof(*link)); struct encoder_init_data enc_init = {0}; if (link == NULL) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->ctx = dc->ctx; link->dc = dc; link->public.connector_signal = SIGNAL_TYPE_VIRTUAL; link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_VIRTUAL; link->link_id.enum_id = ENUM_ID_1; link->link_enc = dm_alloc(sizeof(*link->link_enc)); enc_init.ctx = dc->ctx; enc_init.channel = CHANNEL_ID_UNKNOWN; enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; enc_init.transmitter = TRANSMITTER_UNKNOWN; enc_init.connector = link->link_id; enc_init.encoder.type = OBJECT_TYPE_ENCODER; enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; enc_init.encoder.enum_id = ENUM_ID_1; virtual_link_encoder_construct(link->link_enc, &enc_init); link->public.link_index = dc->link_count; dc->links[dc->link_count] = link; dc->link_count++; } return true; failed_alloc: return false; } static bool stream_adjust_vmin_vmax(struct dc *dc, const struct dc_stream **stream, int num_streams, int vmin, int vmax) { /* TODO: Support multiple streams */ struct core_dc *core_dc = DC_TO_CORE(dc); struct core_stream *core_stream = DC_STREAM_TO_CORE(stream[0]); int i = 0; bool ret = false; struct pipe_ctx *pipes; unsigned int underlay_idx = core_dc->res_pool->underlay_pipe_index; for (i = 0; i < MAX_PIPES; i++) { if (core_dc->current_context->res_ctx.pipe_ctx[i].stream == core_stream && i != underlay_idx) { pipes = &core_dc->current_context->res_ctx.pipe_ctx[i]; core_dc->hwss.set_drr(&pipes, 1, vmin, vmax); /* build and update the info frame */ resource_build_info_frame(pipes); core_dc->hwss.update_info_frame(pipes); ret = true; } } return ret; } static bool set_gamut_remap(struct dc *dc, const struct dc_stream **stream, int num_streams) { struct core_dc *core_dc = DC_TO_CORE(dc); struct core_stream *core_stream = DC_STREAM_TO_CORE(stream[0]); int i = 0; bool ret = false; struct pipe_ctx *pipes; for (i = 0; i < MAX_PIPES; i++) { if (core_dc->current_context->res_ctx.pipe_ctx[i].stream == core_stream) { pipes = &core_dc->current_context->res_ctx.pipe_ctx[i]; core_dc->hwss.set_plane_config(core_dc, pipes, &core_dc->current_context->res_ctx); ret = true; } } return ret; } /* This function is not expected to fail, proper implementation of * validation will prevent this from ever being called for unsupported * configurations. */ static void stream_update_scaling( const struct dc *dc, const struct dc_stream *dc_stream, const struct rect *src, const struct rect *dst) { struct core_stream *stream = DC_STREAM_TO_CORE(dc_stream); struct core_dc *core_dc = DC_TO_CORE(dc); struct validate_context *cur_ctx = core_dc->current_context; int i, j; if (src) stream->public.src = *src; if (dst) stream->public.dst = *dst; for (i = 0; i < cur_ctx->target_count; i++) { struct core_target *target = cur_ctx->targets[i]; struct dc_target_status *status = &cur_ctx->target_status[i]; for (j = 0; j < target->public.stream_count; j++) { if (target->public.streams[j] != dc_stream) continue; if (status->surface_count) if (!dc_commit_surfaces_to_target( &core_dc->public, status->surfaces, status->surface_count, &target->public)) /* Need to debug validation */ BREAK_TO_DEBUGGER(); return; } } } static bool set_backlight(struct dc *dc, unsigned int backlight_level, unsigned int frame_ramp, const struct dc_stream *stream) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; if (stream->sink->sink_signal == SIGNAL_TYPE_EDP) { for (i = 0; i < core_dc->link_count; i++) dc_link_set_backlight_level(&core_dc->links[i]->public, backlight_level, frame_ramp, stream); } return true; } static bool init_dmcu_backlight_settings(struct dc *dc) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) dc_link_init_dmcu_backlight_settings (&core_dc->links[i]->public); return true; } static bool set_abm_level(struct dc *dc, unsigned int abm_level) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) dc_link_set_abm_level(&core_dc->links[i]->public, abm_level); return true; } static bool set_psr_enable(struct dc *dc, bool enable) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) dc_link_set_psr_enable(&core_dc->links[i]->public, enable); return true; } static bool setup_psr(struct dc *dc, const struct dc_stream *stream) { struct core_dc *core_dc = DC_TO_CORE(dc); struct core_stream *core_stream = DC_STREAM_TO_CORE(stream); struct pipe_ctx *pipes; int i; unsigned int underlay_idx = core_dc->res_pool->underlay_pipe_index; for (i = 0; i < core_dc->link_count; i++) { if (core_stream->sink->link == core_dc->links[i]) dc_link_setup_psr(&core_dc->links[i]->public, stream); } for (i = 0; i < MAX_PIPES; i++) { if (core_dc->current_context->res_ctx.pipe_ctx[i].stream == core_stream && i != underlay_idx) { pipes = &core_dc->current_context->res_ctx.pipe_ctx[i]; core_dc->hwss.set_static_screen_control(&pipes, 1, 0x182); } } return true; } static void set_drive_settings(struct dc *dc, struct link_training_settings *lt_settings) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) dc_link_dp_set_drive_settings(&core_dc->links[i]->public, lt_settings); } static void perform_link_training(struct dc *dc, struct dc_link_settings *link_setting, bool skip_video_pattern) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) dc_link_dp_perform_link_training( &core_dc->links[i]->public, link_setting, skip_video_pattern); } static void set_preferred_link_settings(struct dc *dc, struct dc_link_settings *link_setting) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; for (i = 0; i < core_dc->link_count; i++) { core_dc->links[i]->public.verified_link_cap.lane_count = link_setting->lane_count; core_dc->links[i]->public.verified_link_cap.link_rate = link_setting->link_rate; } } static void enable_hpd(const struct dc_link *link) { dc_link_dp_enable_hpd(link); } static void disable_hpd(const struct dc_link *link) { dc_link_dp_disable_hpd(link); } static void set_test_pattern( const struct dc_link *link, enum dp_test_pattern test_pattern, const struct link_training_settings *p_link_settings, const unsigned char *p_custom_pattern, unsigned int cust_pattern_size) { if (link != NULL) dc_link_dp_set_test_pattern( link, test_pattern, p_link_settings, p_custom_pattern, cust_pattern_size); } static void allocate_dc_stream_funcs(struct core_dc *core_dc) { core_dc->public.stream_funcs.stream_update_scaling = stream_update_scaling; if (core_dc->hwss.set_drr != NULL) { core_dc->public.stream_funcs.adjust_vmin_vmax = stream_adjust_vmin_vmax; } core_dc->public.stream_funcs.set_gamut_remap = set_gamut_remap; core_dc->public.stream_funcs.set_backlight = set_backlight; core_dc->public.stream_funcs.init_dmcu_backlight_settings = init_dmcu_backlight_settings; core_dc->public.stream_funcs.set_abm_level = set_abm_level; core_dc->public.stream_funcs.set_psr_enable = set_psr_enable; core_dc->public.stream_funcs.setup_psr = setup_psr; core_dc->public.link_funcs.set_drive_settings = set_drive_settings; core_dc->public.link_funcs.perform_link_training = perform_link_training; core_dc->public.link_funcs.set_preferred_link_settings = set_preferred_link_settings; core_dc->public.link_funcs.enable_hpd = enable_hpd; core_dc->public.link_funcs.disable_hpd = disable_hpd; core_dc->public.link_funcs.set_test_pattern = set_test_pattern; } static void destruct(struct core_dc *dc) { resource_validate_ctx_destruct(dc->current_context); dm_free(dc->temp_flip_context); dc->temp_flip_context = NULL; destroy_links(dc); dc_destroy_resource_pool(dc); if (dc->ctx->gpio_service) dal_gpio_service_destroy(&dc->ctx->gpio_service); if (dc->ctx->i2caux) dal_i2caux_destroy(&dc->ctx->i2caux); if (dc->ctx->created_bios) dal_bios_parser_destroy(&dc->ctx->dc_bios); if (dc->ctx->logger) dal_logger_destroy(&dc->ctx->logger); dm_free(dc->current_context); dc->current_context = NULL; dm_free(dc->ctx); dc->ctx = NULL; } static bool construct(struct core_dc *dc, const struct dc_init_data *init_params) { struct dal_logger *logger; struct dc_context *dc_ctx = dm_alloc(sizeof(*dc_ctx)); enum dce_version dc_version = DCE_VERSION_UNKNOWN; if (!dc_ctx) { dm_error("%s: failed to create ctx\n", __func__); goto ctx_fail; } dc->current_context = dm_alloc(sizeof(*dc->current_context)); dc->temp_flip_context = dm_alloc(sizeof(*dc->temp_flip_context)); if (!dc->current_context || !dc->temp_flip_context) { dm_error("%s: failed to create validate ctx\n", __func__); goto val_ctx_fail; } dc_ctx->cgs_device = init_params->cgs_device; dc_ctx->driver_context = init_params->driver; dc_ctx->dc = &dc->public; dc_ctx->asic_id = init_params->asic_id; /* Create logger */ logger = dal_logger_create(dc_ctx); if (!logger) { /* can *not* call logger. call base driver 'print error' */ dm_error("%s: failed to create Logger!\n", __func__); goto logger_fail; } dc_ctx->logger = logger; dc->ctx = dc_ctx; dc->ctx->dce_environment = init_params->dce_environment; dc_version = resource_parse_asic_id(init_params->asic_id); dc->ctx->dce_version = dc_version; /* Resource should construct all asic specific resources. * This should be the only place where we need to parse the asic id */ if (init_params->vbios_override) dc_ctx->dc_bios = init_params->vbios_override; else { /* Create BIOS parser */ struct bp_init_data bp_init_data; bp_init_data.ctx = dc_ctx; bp_init_data.bios = init_params->asic_id.atombios_base_address; dc_ctx->dc_bios = dal_bios_parser_create( &bp_init_data, dc_version); if (!dc_ctx->dc_bios) { ASSERT_CRITICAL(false); goto bios_fail; } dc_ctx->created_bios = true; } /* Create I2C AUX */ dc_ctx->i2caux = dal_i2caux_create(dc_ctx); if (!dc_ctx->i2caux) { ASSERT_CRITICAL(false); goto failed_to_create_i2caux; } /* Create GPIO service */ dc_ctx->gpio_service = dal_gpio_service_create( dc_version, dc_ctx->dce_environment, dc_ctx); if (!dc_ctx->gpio_service) { ASSERT_CRITICAL(false); goto gpio_fail; } dc->res_pool = dc_create_resource_pool( dc, init_params->num_virtual_links, dc_version, init_params->asic_id); if (!dc->res_pool) goto create_resource_fail; if (!create_links(dc, init_params->num_virtual_links)) goto create_links_fail; allocate_dc_stream_funcs(dc); return true; /**** error handling here ****/ create_links_fail: create_resource_fail: gpio_fail: failed_to_create_i2caux: bios_fail: logger_fail: val_ctx_fail: ctx_fail: destruct(dc); return false; } /* void ProgramPixelDurationV(unsigned int pixelClockInKHz ) { fixed31_32 pixel_duration = Fixed31_32(100000000, pixelClockInKHz) * 10; unsigned int pixDurationInPico = round(pixel_duration); DPG_PIPE_ARBITRATION_CONTROL1 arb_control; arb_control.u32All = ReadReg (mmDPGV0_PIPE_ARBITRATION_CONTROL1); arb_control.bits.PIXEL_DURATION = pixDurationInPico; WriteReg (mmDPGV0_PIPE_ARBITRATION_CONTROL1, arb_control.u32All); arb_control.u32All = ReadReg (mmDPGV1_PIPE_ARBITRATION_CONTROL1); arb_control.bits.PIXEL_DURATION = pixDurationInPico; WriteReg (mmDPGV1_PIPE_ARBITRATION_CONTROL1, arb_control.u32All); WriteReg (mmDPGV0_PIPE_ARBITRATION_CONTROL2, 0x4000800); WriteReg (mmDPGV0_REPEATER_PROGRAM, 0x11); WriteReg (mmDPGV1_PIPE_ARBITRATION_CONTROL2, 0x4000800); WriteReg (mmDPGV1_REPEATER_PROGRAM, 0x11); } */ /******************************************************************************* * Public functions ******************************************************************************/ struct dc *dc_create(const struct dc_init_data *init_params) { struct core_dc *core_dc = dm_alloc(sizeof(*core_dc)); unsigned int full_pipe_count; if (NULL == core_dc) goto alloc_fail; if (false == construct(core_dc, init_params)) goto construct_fail; /*TODO: separate HW and SW initialization*/ core_dc->hwss.init_hw(core_dc); full_pipe_count = core_dc->res_pool->pipe_count; if (core_dc->res_pool->underlay_pipe_index >= 0) full_pipe_count--; core_dc->public.caps.max_targets = dm_min( full_pipe_count, core_dc->res_pool->stream_enc_count); core_dc->public.caps.max_links = core_dc->link_count; core_dc->public.caps.max_audios = core_dc->res_pool->audio_count; core_dc->public.config = init_params->flags; dm_logger_write(core_dc->ctx->logger, LOG_DC, "Display Core initialized\n"); /* TODO: missing feature to be enabled */ core_dc->public.debug.disable_dfs_bypass = true; return &core_dc->public; construct_fail: dm_free(core_dc); alloc_fail: return NULL; } void dc_destroy(struct dc **dc) { struct core_dc *core_dc = DC_TO_CORE(*dc); destruct(core_dc); dm_free(core_dc); *dc = NULL; } static bool is_validation_required( const struct core_dc *dc, const struct dc_validation_set set[], int set_count) { const struct validate_context *context = dc->current_context; int i, j; if (context->target_count != set_count) return true; for (i = 0; i < set_count; i++) { if (set[i].surface_count != context->target_status[i].surface_count) return true; if (!is_target_unchanged(DC_TARGET_TO_CORE(set[i].target), context->targets[i])) return true; for (j = 0; j < set[i].surface_count; j++) { struct dc_surface temp_surf = { 0 }; temp_surf = *context->target_status[i].surfaces[j]; temp_surf.clip_rect = set[i].surfaces[j]->clip_rect; temp_surf.dst_rect.x = set[i].surfaces[j]->dst_rect.x; temp_surf.dst_rect.y = set[i].surfaces[j]->dst_rect.y; if (memcmp(&temp_surf, set[i].surfaces[j], sizeof(temp_surf)) != 0) return true; } } return false; } bool dc_validate_resources( const struct dc *dc, const struct dc_validation_set set[], uint8_t set_count) { struct core_dc *core_dc = DC_TO_CORE(dc); enum dc_status result = DC_ERROR_UNEXPECTED; struct validate_context *context; if (!is_validation_required(core_dc, set, set_count)) return true; context = dm_alloc(sizeof(struct validate_context)); if(context == NULL) goto context_alloc_fail; result = core_dc->res_pool->funcs->validate_with_context( core_dc, set, set_count, context); resource_validate_ctx_destruct(context); dm_free(context); context_alloc_fail: if (result != DC_OK) { dm_logger_write(core_dc->ctx->logger, LOG_WARNING, "%s:resource validation failed, dc_status:%d\n", __func__, result); } return (result == DC_OK); } bool dc_validate_guaranteed( const struct dc *dc, const struct dc_target *dc_target) { struct core_dc *core_dc = DC_TO_CORE(dc); enum dc_status result = DC_ERROR_UNEXPECTED; struct validate_context *context; context = dm_alloc(sizeof(struct validate_context)); if (context == NULL) goto context_alloc_fail; result = core_dc->res_pool->funcs->validate_guaranteed( core_dc, dc_target, context); resource_validate_ctx_destruct(context); dm_free(context); context_alloc_fail: if (result != DC_OK) { dm_logger_write(core_dc->ctx->logger, LOG_WARNING, "%s:guaranteed validation failed, dc_status:%d\n", __func__, result); } return (result == DC_OK); } static void program_timing_sync( struct core_dc *core_dc, struct validate_context *ctx) { int i, j; int group_index = 0; int pipe_count = ctx->res_ctx.pool->pipe_count; struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe) continue; unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; } for (i = 0; i < pipe_count; i++) { int group_size = 1; struct pipe_ctx *pipe_set[MAX_PIPES]; if (!unsynced_pipes[i]) continue; pipe_set[0] = unsynced_pipes[i]; unsynced_pipes[i] = NULL; /* Add tg to the set, search rest of the tg's for ones with * same timing, add all tgs with same timing to the group */ for (j = i + 1; j < pipe_count; j++) { if (!unsynced_pipes[j]) continue; if (resource_are_streams_timing_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } } /* set first unblanked pipe as master */ for (j = 0; j < group_size; j++) { struct pipe_ctx *temp; if (!pipe_set[j]->tg->funcs->is_blanked(pipe_set[j]->tg)) { if (j == 0) break; temp = pipe_set[0]; pipe_set[0] = pipe_set[j]; pipe_set[j] = temp; break; } } /* remove any other unblanked pipes as they have already been synced */ for (j = j + 1; j < group_size; j++) { if (!pipe_set[j]->tg->funcs->is_blanked(pipe_set[j]->tg)) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } } if (group_size > 1) { core_dc->hwss.enable_timing_synchronization( core_dc, group_index, group_size, pipe_set); group_index++; } } } static bool targets_changed( struct core_dc *dc, struct dc_target *targets[], uint8_t target_count) { uint8_t i; if (target_count != dc->current_context->target_count) return true; for (i = 0; i < dc->current_context->target_count; i++) { if (&dc->current_context->targets[i]->public != targets[i]) return true; } return false; } static void fill_display_configs( const struct validate_context *context, struct dm_pp_display_configuration *pp_display_cfg) { uint8_t i, j, k; uint8_t num_cfgs = 0; for (i = 0; i < context->target_count; i++) { const struct core_target *target = context->targets[i]; for (j = 0; j < target->public.stream_count; j++) { const struct core_stream *stream = DC_STREAM_TO_CORE(target->public.streams[j]); struct dm_pp_single_disp_config *cfg = &pp_display_cfg->disp_configs[num_cfgs]; const struct pipe_ctx *pipe_ctx = NULL; for (k = 0; k < MAX_PIPES; k++) if (stream == context->res_ctx.pipe_ctx[k].stream) { pipe_ctx = &context->res_ctx.pipe_ctx[k]; break; } ASSERT(pipe_ctx != NULL); num_cfgs++; cfg->signal = pipe_ctx->stream->signal; cfg->pipe_idx = pipe_ctx->pipe_idx; cfg->src_height = stream->public.src.height; cfg->src_width = stream->public.src.width; cfg->ddi_channel_mapping = stream->sink->link->ddi_channel_mapping.raw; cfg->transmitter = stream->sink->link->link_enc->transmitter; cfg->link_settings.lane_count = stream->sink->link->public.cur_link_settings.lane_count; cfg->link_settings.link_rate = stream->sink->link->public.cur_link_settings.link_rate; cfg->link_settings.link_spread = stream->sink->link->public.cur_link_settings.link_spread; cfg->sym_clock = stream->phy_pix_clk; /* Round v_refresh*/ cfg->v_refresh = stream->public.timing.pix_clk_khz * 1000; cfg->v_refresh /= stream->public.timing.h_total; cfg->v_refresh = (cfg->v_refresh + stream->public.timing.v_total / 2) / stream->public.timing.v_total; } } pp_display_cfg->display_count = num_cfgs; } static uint32_t get_min_vblank_time_us(const struct validate_context *context) { uint8_t i, j; uint32_t min_vertical_blank_time = -1; for (i = 0; i < context->target_count; i++) { const struct core_target *target = context->targets[i]; for (j = 0; j < target->public.stream_count; j++) { const struct dc_stream *stream = target->public.streams[j]; uint32_t vertical_blank_in_pixels = 0; uint32_t vertical_blank_time = 0; vertical_blank_in_pixels = stream->timing.h_total * (stream->timing.v_total - stream->timing.v_addressable); vertical_blank_time = vertical_blank_in_pixels * 1000 / stream->timing.pix_clk_khz; if (min_vertical_blank_time > vertical_blank_time) min_vertical_blank_time = vertical_blank_time; } } return min_vertical_blank_time; } static int determine_sclk_from_bounding_box( const struct core_dc *dc, int required_sclk) { int i; /* * Some asics do not give us sclk levels, so we just report the actual * required sclk */ if (dc->sclk_lvls.num_levels == 0) return required_sclk; for (i = 0; i < dc->sclk_lvls.num_levels; i++) { if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk) return dc->sclk_lvls.clocks_in_khz[i]; } /* * even maximum level could not satisfy requirement, this * is unexpected at this stage, should have been caught at * validation time */ ASSERT(0); return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1]; } void pplib_apply_display_requirements( struct core_dc *dc, const struct validate_context *context, struct dm_pp_display_configuration *pp_display_cfg) { pp_display_cfg->all_displays_in_sync = context->bw_results.all_displays_in_sync; pp_display_cfg->nb_pstate_switch_disable = context->bw_results.nbp_state_change_enable == false; pp_display_cfg->cpu_cc6_disable = context->bw_results.cpuc_state_change_enable == false; pp_display_cfg->cpu_pstate_disable = context->bw_results.cpup_state_change_enable == false; pp_display_cfg->cpu_pstate_separation_time = context->bw_results.blackout_recovery_time_us; pp_display_cfg->min_memory_clock_khz = context->bw_results.required_yclk / MEMORY_TYPE_MULTIPLIER; pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box( dc, context->bw_results.required_sclk); pp_display_cfg->min_engine_clock_deep_sleep_khz = context->bw_results.required_sclk_deep_sleep; pp_display_cfg->avail_mclk_switch_time_us = get_min_vblank_time_us(context); /* TODO: dce11.2*/ pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0; pp_display_cfg->disp_clk_khz = context->bw_results.dispclk_khz; fill_display_configs(context, pp_display_cfg); /* TODO: is this still applicable?*/ if (pp_display_cfg->display_count == 1) { const struct dc_crtc_timing *timing = &context->targets[0]->public.streams[0]->timing; pp_display_cfg->crtc_index = pp_display_cfg->disp_configs[0].pipe_idx; pp_display_cfg->line_time_in_us = timing->h_total * 1000 / timing->pix_clk_khz; } if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof( struct dm_pp_display_configuration)) != 0) dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg); dc->prev_display_config = *pp_display_cfg; } bool dc_commit_targets( struct dc *dc, struct dc_target *targets[], uint8_t target_count) { struct core_dc *core_dc = DC_TO_CORE(dc); struct dc_bios *dcb = core_dc->ctx->dc_bios; enum dc_status result = DC_ERROR_UNEXPECTED; struct validate_context *context; struct dc_validation_set set[MAX_TARGETS]; int i, j, k; if (false == targets_changed(core_dc, targets, target_count)) return DC_OK; dm_logger_write(core_dc->ctx->logger, LOG_DC, "%s: %d targets\n", __func__, target_count); for (i = 0; i < target_count; i++) { struct dc_target *target = targets[i]; dc_target_log(target, core_dc->ctx->logger, LOG_DC); set[i].target = targets[i]; set[i].surface_count = 0; } context = dm_alloc(sizeof(struct validate_context)); if (context == NULL) goto context_alloc_fail; result = core_dc->res_pool->funcs->validate_with_context(core_dc, set, target_count, context); if (result != DC_OK){ dm_logger_write(core_dc->ctx->logger, LOG_ERROR, "%s: Context validation failed! dc_status:%d\n", __func__, result); BREAK_TO_DEBUGGER(); resource_validate_ctx_destruct(context); goto fail; } if (!dcb->funcs->is_accelerated_mode(dcb)) { core_dc->hwss.enable_accelerated_mode(core_dc); } if (result == DC_OK) { result = core_dc->hwss.apply_ctx_to_hw(core_dc, context); } program_timing_sync(core_dc, context); for (i = 0; i < context->target_count; i++) { struct dc_target *dc_target = &context->targets[i]->public; struct core_sink *sink = DC_SINK_TO_CORE(dc_target->streams[0]->sink); for (j = 0; j < context->target_status[i].surface_count; j++) { const struct dc_surface *dc_surface = context->target_status[i].surfaces[j]; for (k = 0; k < context->res_ctx.pool->pipe_count; k++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[k]; if (dc_surface != &pipe->surface->public || !dc_surface->visible) continue; pipe->tg->funcs->set_blank(pipe->tg, false); } } CONN_MSG_MODE(sink->link, "{%dx%d, %dx%d@%dKhz}", dc_target->streams[0]->timing.h_addressable, dc_target->streams[0]->timing.v_addressable, dc_target->streams[0]->timing.h_total, dc_target->streams[0]->timing.v_total, dc_target->streams[0]->timing.pix_clk_khz); } pplib_apply_display_requirements(core_dc, context, &context->pp_display_cfg); resource_validate_ctx_destruct(core_dc->current_context); dm_free(core_dc->current_context); core_dc->current_context = context; return (result == DC_OK); fail: dm_free(context); context_alloc_fail: return (result == DC_OK); } bool dc_pre_update_surfaces_to_target( struct dc *dc, const struct dc_surface *const *new_surfaces, uint8_t new_surface_count, struct dc_target *dc_target) { int i, j; struct core_dc *core_dc = DC_TO_CORE(dc); uint32_t prev_disp_clk = core_dc->current_context->bw_results.dispclk_khz; struct core_target *target = DC_TARGET_TO_CORE(dc_target); struct dc_target_status *target_status = NULL; struct validate_context *context; struct validate_context *temp_context; bool ret = true; pre_surface_trace(dc, new_surfaces, new_surface_count); if (core_dc->current_context->target_count == 0) return false; /* Cannot commit surface to a target that is not commited */ for (i = 0; i < core_dc->current_context->target_count; i++) if (target == core_dc->current_context->targets[i]) break; if (i == core_dc->current_context->target_count) return false; target_status = &core_dc->current_context->target_status[i]; if (new_surface_count == target_status->surface_count) { bool skip_pre = true; for (i = 0; i < target_status->surface_count; i++) { struct dc_surface temp_surf = { 0 }; temp_surf = *target_status->surfaces[i]; temp_surf.clip_rect = new_surfaces[i]->clip_rect; temp_surf.dst_rect.x = new_surfaces[i]->dst_rect.x; temp_surf.dst_rect.y = new_surfaces[i]->dst_rect.y; if (memcmp(&temp_surf, new_surfaces[i], sizeof(temp_surf)) != 0) { skip_pre = false; break; } } if (skip_pre) return true; } context = dm_alloc(sizeof(struct validate_context)); if (!context) { dm_error("%s: failed to create validate ctx\n", __func__); ret = false; goto val_ctx_fail; } resource_validate_ctx_copy_construct(core_dc->current_context, context); dm_logger_write(core_dc->ctx->logger, LOG_DC, "%s: commit %d surfaces to target 0x%x\n", __func__, new_surface_count, dc_target); if (!resource_attach_surfaces_to_context( new_surfaces, new_surface_count, dc_target, context)) { BREAK_TO_DEBUGGER(); ret = false; goto unexpected_fail; } for (i = 0; i < new_surface_count; i++) for (j = 0; j < context->res_ctx.pool->pipe_count; j++) { if (context->res_ctx.pipe_ctx[j].surface != DC_SURFACE_TO_CORE(new_surfaces[i])) continue; resource_build_scaling_params( new_surfaces[i], &context->res_ctx.pipe_ctx[j]); if (dc->debug.surface_visual_confirm) { context->res_ctx.pipe_ctx[j].scl_data.recout.height -= 2; context->res_ctx.pipe_ctx[j].scl_data.recout.width -= 2; } } if (core_dc->res_pool->funcs->validate_bandwidth(core_dc, context) != DC_OK) { BREAK_TO_DEBUGGER(); ret = false; goto unexpected_fail; } if (core_dc->res_pool->funcs->apply_clk_constraints) { temp_context = core_dc->res_pool->funcs->apply_clk_constraints( core_dc, context); if (!temp_context) { dm_error("%s:failed apply clk constraints\n", __func__); ret = false; goto unexpected_fail; } resource_validate_ctx_destruct(context); dm_free(context); context = temp_context; } if (prev_disp_clk < context->bw_results.dispclk_khz) { pplib_apply_display_requirements(core_dc, context, &context->pp_display_cfg); core_dc->hwss.set_display_clock(context); core_dc->current_context->bw_results.dispclk_khz = context->bw_results.dispclk_khz; } for (i = 0; i < new_surface_count; i++) for (j = 0; j < context->res_ctx.pool->pipe_count; j++) { if (context->res_ctx.pipe_ctx[j].surface != DC_SURFACE_TO_CORE(new_surfaces[i])) continue; core_dc->hwss.prepare_pipe_for_context( core_dc, &context->res_ctx.pipe_ctx[j], context); if (!new_surfaces[i]->visible) context->res_ctx.pipe_ctx[j].tg->funcs->set_blank( context->res_ctx.pipe_ctx[j].tg, true); } unexpected_fail: resource_validate_ctx_destruct(context); dm_free(context); val_ctx_fail: return ret; } bool dc_post_update_surfaces_to_target(struct dc *dc) { struct core_dc *core_dc = DC_TO_CORE(dc); int i; post_surface_trace(dc); for (i = 0; i < core_dc->current_context->res_ctx.pool->pipe_count; i++) if (core_dc->current_context->res_ctx.pipe_ctx[i].stream == NULL) core_dc->hwss.power_down_front_end( core_dc, &core_dc->current_context->res_ctx.pipe_ctx[i]); if (core_dc->res_pool->funcs->validate_bandwidth(core_dc, core_dc->current_context) != DC_OK) { BREAK_TO_DEBUGGER(); return false; } core_dc->hwss.set_bandwidth(core_dc); pplib_apply_display_requirements( core_dc, core_dc->current_context, &core_dc->current_context->pp_display_cfg); return true; } bool dc_commit_surfaces_to_target( struct dc *dc, const struct dc_surface **new_surfaces, uint8_t new_surface_count, struct dc_target *dc_target) { struct dc_surface_update updates[MAX_SURFACES] = { 0 }; struct dc_flip_addrs flip_addr[MAX_SURFACES] = { 0 }; struct dc_plane_info plane_info[MAX_SURFACES] = { 0 }; struct dc_scaling_info scaling_info[MAX_SURFACES] = { 0 }; int i; if (!dc_pre_update_surfaces_to_target( dc, new_surfaces, new_surface_count, dc_target)) return false; for (i = 0; i < new_surface_count; i++) { updates[i].surface = new_surfaces[i]; updates[i].gamma = (struct dc_gamma *)new_surfaces[i]->gamma_correction; flip_addr[i].address = new_surfaces[i]->address; flip_addr[i].flip_immediate = new_surfaces[i]->flip_immediate; plane_info[i].color_space = new_surfaces[i]->color_space; plane_info[i].format = new_surfaces[i]->format; plane_info[i].plane_size = new_surfaces[i]->plane_size; plane_info[i].rotation = new_surfaces[i]->rotation; plane_info[i].horizontal_mirror = new_surfaces[i]->horizontal_mirror; plane_info[i].stereo_format = new_surfaces[i]->stereo_format; plane_info[i].tiling_info = new_surfaces[i]->tiling_info; plane_info[i].visible = new_surfaces[i]->visible; scaling_info[i].scaling_quality = new_surfaces[i]->scaling_quality; scaling_info[i].src_rect = new_surfaces[i]->src_rect; scaling_info[i].dst_rect = new_surfaces[i]->dst_rect; scaling_info[i].clip_rect = new_surfaces[i]->clip_rect; updates[i].flip_addr = &flip_addr[i]; updates[i].plane_info = &plane_info[i]; updates[i].scaling_info = &scaling_info[i]; } dc_update_surfaces_for_target(dc, updates, new_surface_count, dc_target); return dc_post_update_surfaces_to_target(dc); } void dc_update_surfaces_for_target(struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_target *dc_target) { struct core_dc *core_dc = DC_TO_CORE(dc); struct validate_context *context = core_dc->temp_flip_context; int i, j; bool is_new_pipe_surface[MAX_SURFACES]; const struct dc_surface *new_surfaces[MAX_SURFACES] = { 0 }; update_surface_trace(dc, updates, surface_count); *context = *core_dc->current_context; for (i = 0; i < context->res_ctx.pool->pipe_count; i++) { struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i]; if (cur_pipe->top_pipe) cur_pipe->top_pipe = &context->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx]; if (cur_pipe->bottom_pipe) cur_pipe->bottom_pipe = &context->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx]; } for (j = 0; j < MAX_SURFACES; j++) is_new_pipe_surface[j] = true; for (i = 0 ; i < surface_count; i++) { struct core_surface *surface = DC_SURFACE_TO_CORE(updates[i].surface); new_surfaces[i] = updates[i].surface; for (j = 0; j < context->res_ctx.pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (surface == pipe_ctx->surface) is_new_pipe_surface[i] = false; } } if (dc_target) { struct core_target *target = DC_TARGET_TO_CORE(dc_target); if (core_dc->current_context->target_count == 0) return; /* Cannot commit surface to a target that is not commited */ for (i = 0; i < core_dc->current_context->target_count; i++) if (target == core_dc->current_context->targets[i]) break; if (i == core_dc->current_context->target_count) return; if (!resource_attach_surfaces_to_context( new_surfaces, surface_count, dc_target, context)) { BREAK_TO_DEBUGGER(); return; } } for (i = 0; i < surface_count; i++) { struct core_surface *surface = DC_SURFACE_TO_CORE(updates[i].surface); for (j = 0; j < context->res_ctx.pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->surface != surface) continue; if (updates[i].flip_addr) { surface->public.address = updates[i].flip_addr->address; surface->public.flip_immediate = updates[i].flip_addr->flip_immediate; } if (updates[i].plane_info || updates[i].scaling_info || is_new_pipe_surface[j]) { if (updates[i].plane_info) { surface->public.color_space = updates[i].plane_info->color_space; surface->public.format = updates[i].plane_info->format; surface->public.plane_size = updates[i].plane_info->plane_size; surface->public.rotation = updates[i].plane_info->rotation; surface->public.horizontal_mirror = updates[i].plane_info->horizontal_mirror; surface->public.stereo_format = updates[i].plane_info->stereo_format; surface->public.tiling_info = updates[i].plane_info->tiling_info; surface->public.visible = updates[i].plane_info->visible; } if (updates[i].scaling_info) { surface->public.scaling_quality = updates[i].scaling_info->scaling_quality; surface->public.dst_rect = updates[i].scaling_info->dst_rect; surface->public.src_rect = updates[i].scaling_info->src_rect; surface->public.clip_rect = updates[i].scaling_info->clip_rect; } resource_build_scaling_params(updates[i].surface, pipe_ctx); if (dc->debug.surface_visual_confirm) { pipe_ctx->scl_data.recout.height -= 2; pipe_ctx->scl_data.recout.width -= 2; } } } } for (i = 0; i < surface_count; i++) { struct core_surface *surface = DC_SURFACE_TO_CORE(updates[i].surface); bool apply_ctx = false; for (j = 0; j < context->res_ctx.pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->surface != surface) continue; if (updates[i].flip_addr) { core_dc->hwss.pipe_control_lock( core_dc->hwseq, pipe_ctx->pipe_idx, PIPE_LOCK_CONTROL_SURFACE, true); core_dc->hwss.update_plane_addr(core_dc, pipe_ctx); } if (updates[i].plane_info || updates[i].scaling_info || is_new_pipe_surface[j]) { apply_ctx = true; if (!pipe_ctx->tg->funcs->is_blanked(pipe_ctx->tg)) { core_dc->hwss.pipe_control_lock( core_dc->hwseq, pipe_ctx->pipe_idx, PIPE_LOCK_CONTROL_SURFACE | PIPE_LOCK_CONTROL_GRAPHICS | PIPE_LOCK_CONTROL_SCL | PIPE_LOCK_CONTROL_BLENDER | PIPE_LOCK_CONTROL_MODE, true); } } if (updates[i].gamma) core_dc->hwss.prepare_pipe_for_context( core_dc, pipe_ctx, context); } if (apply_ctx) core_dc->hwss.apply_ctx_for_surface(core_dc, surface, context); } for (i = context->res_ctx.pool->pipe_count - 1; i >= 0; i--) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; for (j = 0; j < surface_count; j++) { if (updates[j].surface == &pipe_ctx->surface->public) { if (!pipe_ctx->tg->funcs->is_blanked(pipe_ctx->tg)) { core_dc->hwss.pipe_control_lock( core_dc->hwseq, pipe_ctx->pipe_idx, PIPE_LOCK_CONTROL_GRAPHICS | PIPE_LOCK_CONTROL_SCL | PIPE_LOCK_CONTROL_BLENDER | PIPE_LOCK_CONTROL_SURFACE, false); } break; } } } core_dc->temp_flip_context = core_dc->current_context; core_dc->current_context = context; } uint8_t dc_get_current_target_count(const struct dc *dc) { struct core_dc *core_dc = DC_TO_CORE(dc); return core_dc->current_context->target_count; } struct dc_target *dc_get_target_at_index(const struct dc *dc, uint8_t i) { struct core_dc *core_dc = DC_TO_CORE(dc); if (i < core_dc->current_context->target_count) return &(core_dc->current_context->targets[i]->public); return NULL; } const struct dc_link *dc_get_link_at_index(const struct dc *dc, uint32_t link_index) { struct core_dc *core_dc = DC_TO_CORE(dc); return &core_dc->links[link_index]->public; } const struct graphics_object_id dc_get_link_id_at_index( struct dc *dc, uint32_t link_index) { struct core_dc *core_dc = DC_TO_CORE(dc); return core_dc->links[link_index]->link_id; } const struct ddc_service *dc_get_ddc_at_index( struct dc *dc, uint32_t link_index) { struct core_dc *core_dc = DC_TO_CORE(dc); return core_dc->links[link_index]->ddc; } enum dc_irq_source dc_get_hpd_irq_source_at_index( struct dc *dc, uint32_t link_index) { struct core_dc *core_dc = DC_TO_CORE(dc); return core_dc->links[link_index]->public.irq_source_hpd; } const struct audio **dc_get_audios(struct dc *dc) { struct core_dc *core_dc = DC_TO_CORE(dc); return (const struct audio **)core_dc->res_pool->audios; } void dc_flip_surface_addrs( struct dc *dc, const struct dc_surface *const surfaces[], struct dc_flip_addrs flip_addrs[], uint32_t count) { struct core_dc *core_dc = DC_TO_CORE(dc); int i, j; for (i = 0; i < count; i++) { struct core_surface *surface = DC_SURFACE_TO_CORE(surfaces[i]); surface->public.address = flip_addrs[i].address; surface->public.flip_immediate = flip_addrs[i].flip_immediate; for (j = 0; j < core_dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &core_dc->current_context->res_ctx.pipe_ctx[j]; if (pipe_ctx->surface != surface) continue; core_dc->hwss.update_plane_addr(core_dc, pipe_ctx); } } } enum dc_irq_source dc_interrupt_to_irq_source( struct dc *dc, uint32_t src_id, uint32_t ext_id) { struct core_dc *core_dc = DC_TO_CORE(dc); return dal_irq_service_to_irq_source(core_dc->res_pool->irqs, src_id, ext_id); } void dc_interrupt_set(const struct dc *dc, enum dc_irq_source src, bool enable) { struct core_dc *core_dc = DC_TO_CORE(dc); dal_irq_service_set(core_dc->res_pool->irqs, src, enable); } void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) { struct core_dc *core_dc = DC_TO_CORE(dc); dal_irq_service_ack(core_dc->res_pool->irqs, src); } void dc_set_power_state( struct dc *dc, enum dc_acpi_cm_power_state power_state, enum dc_video_power_state video_power_state) { struct core_dc *core_dc = DC_TO_CORE(dc); core_dc->previous_power_state = core_dc->current_power_state; core_dc->current_power_state = video_power_state; switch (power_state) { case DC_ACPI_CM_POWER_STATE_D0: core_dc->hwss.init_hw(core_dc); break; default: /* NULL means "reset/release all DC targets" */ dc_commit_targets(dc, NULL, 0); core_dc->hwss.power_down(core_dc); /* Zero out the current context so that on resume we start with * clean state, and dc hw programming optimizations will not * cause any trouble. */ memset(core_dc->current_context, 0, sizeof(*core_dc->current_context)); core_dc->current_context->res_ctx.pool = core_dc->res_pool; break; } } void dc_resume(const struct dc *dc) { struct core_dc *core_dc = DC_TO_CORE(dc); uint32_t i; for (i = 0; i < core_dc->link_count; i++) core_link_resume(core_dc->links[i]); } bool dc_read_dpcd( struct dc *dc, uint32_t link_index, uint32_t address, uint8_t *data, uint32_t size) { struct core_dc *core_dc = DC_TO_CORE(dc); struct core_link *link = core_dc->links[link_index]; enum ddc_result r = dal_ddc_service_read_dpcd_data( link->ddc, address, data, size); return r == DDC_RESULT_SUCESSFULL; } bool dc_write_dpcd( struct dc *dc, uint32_t link_index, uint32_t address, const uint8_t *data, uint32_t size) { struct core_dc *core_dc = DC_TO_CORE(dc); struct core_link *link = core_dc->links[link_index]; enum ddc_result r = dal_ddc_service_write_dpcd_data( link->ddc, address, data, size); return r == DDC_RESULT_SUCESSFULL; } bool dc_submit_i2c( struct dc *dc, uint32_t link_index, struct i2c_command *cmd) { struct core_dc *core_dc = DC_TO_CORE(dc); struct core_link *link = core_dc->links[link_index]; struct ddc_service *ddc = link->ddc; return dal_i2caux_submit_i2c_command( ddc->ctx->i2caux, ddc->ddc_pin, cmd); } static bool link_add_remote_sink_helper(struct core_link *core_link, struct dc_sink *sink) { struct dc_link *dc_link = &core_link->public; if (dc_link->sink_count >= MAX_SINKS_PER_LINK) { BREAK_TO_DEBUGGER(); return false; } dc_sink_retain(sink); dc_link->remote_sinks[dc_link->sink_count] = sink; dc_link->sink_count++; return true; } struct dc_sink *dc_link_add_remote_sink( const struct dc_link *link, const uint8_t *edid, int len, struct dc_sink_init_data *init_data) { struct dc_sink *dc_sink; enum dc_edid_status edid_status; struct core_link *core_link = DC_LINK_TO_LINK(link); if (len > MAX_EDID_BUFFER_SIZE) { dm_error("Max EDID buffer size breached!\n"); return NULL; } if (!init_data) { BREAK_TO_DEBUGGER(); return NULL; } if (!init_data->link) { BREAK_TO_DEBUGGER(); return NULL; } dc_sink = dc_sink_create(init_data); if (!dc_sink) return NULL; memmove(dc_sink->dc_edid.raw_edid, edid, len); dc_sink->dc_edid.length = len; if (!link_add_remote_sink_helper( core_link, dc_sink)) goto fail_add_sink; edid_status = dm_helpers_parse_edid_caps( core_link->ctx, &dc_sink->dc_edid, &dc_sink->edid_caps); if (edid_status != EDID_OK) goto fail; return dc_sink; fail: dc_link_remove_remote_sink(link, dc_sink); fail_add_sink: dc_sink_release(dc_sink); return NULL; } void dc_link_set_sink(const struct dc_link *link, struct dc_sink *sink) { struct core_link *core_link = DC_LINK_TO_LINK(link); struct dc_link *dc_link = &core_link->public; dc_link->local_sink = sink; if (sink == NULL) { dc_link->type = dc_connection_none; } else { dc_link->type = dc_connection_single; } } void dc_link_remove_remote_sink(const struct dc_link *link, const struct dc_sink *sink) { int i; struct core_link *core_link = DC_LINK_TO_LINK(link); struct dc_link *dc_link = &core_link->public; if (!link->sink_count) { BREAK_TO_DEBUGGER(); return; } for (i = 0; i < dc_link->sink_count; i++) { if (dc_link->remote_sinks[i] == sink) { dc_sink_release(sink); dc_link->remote_sinks[i] = NULL; /* shrink array to remove empty place */ while (i < dc_link->sink_count - 1) { dc_link->remote_sinks[i] = dc_link->remote_sinks[i+1]; i++; } dc_link->sink_count--; return; } } } const struct dc_stream_status *dc_stream_get_status( const struct dc_stream *dc_stream) { struct core_stream *stream = DC_STREAM_TO_CORE(dc_stream); return &stream->status; } bool dc_init_dchub(struct dc *dc, struct dchub_init_data *dh_data) { int i; struct core_dc *core_dc = DC_TO_CORE(dc); struct mem_input *mi = NULL; for (i = 0; i < core_dc->res_pool->pipe_count; i++) { if (core_dc->res_pool->mis[i] != NULL) { mi = core_dc->res_pool->mis[i]; break; } } if (mi == NULL) { dm_error("no mem_input!\n"); return false; } if (mi->funcs->mem_input_update_dchub) mi->funcs->mem_input_update_dchub(mi, dh_data); else ASSERT(mi->funcs->mem_input_update_dchub); return true; }