/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dm_helpers.h" #include "gpio_service_interface.h" #include "include/ddc_service_types.h" #include "include/grph_object_id.h" #include "include/dpcd_defs.h" #include "include/logger_interface.h" #include "include/vector.h" #include "core_types.h" #include "dc_link_ddc.h" #define AUX_POWER_UP_WA_DELAY 500 #define I2C_OVER_AUX_DEFER_WA_DELAY 70 /* CV smart dongle slave address for retrieving supported HDTV modes*/ #define CV_SMART_DONGLE_ADDRESS 0x20 /* DVI-HDMI dongle slave address for retrieving dongle signature*/ #define DVI_HDMI_DONGLE_ADDRESS 0x68 static const int8_t dvi_hdmi_dongle_signature_str[] = "6140063500G"; struct dvi_hdmi_dongle_signature_data { int8_t vendor[3];/* "AMD" */ uint8_t version[2]; uint8_t size; int8_t id[11];/* "6140063500G"*/ }; /* DP-HDMI dongle slave address for retrieving dongle signature*/ #define DP_HDMI_DONGLE_ADDRESS 0x40 static const uint8_t dp_hdmi_dongle_signature_str[] = "DP-HDMI ADAPTOR"; #define DP_HDMI_DONGLE_SIGNATURE_EOT 0x04 struct dp_hdmi_dongle_signature_data { int8_t id[15];/* "DP-HDMI ADAPTOR"*/ uint8_t eot;/* end of transmition '\x4' */ }; /* Address range from 0x00 to 0x1F.*/ #define DP_ADAPTOR_TYPE2_SIZE 0x20 #define DP_ADAPTOR_TYPE2_REG_ID 0x10 #define DP_ADAPTOR_TYPE2_REG_MAX_TMDS_CLK 0x1D /* Identifies adaptor as Dual-mode adaptor */ #define DP_ADAPTOR_TYPE2_ID 0xA0 /* MHz*/ #define DP_ADAPTOR_TYPE2_MAX_TMDS_CLK 600 /* MHz*/ #define DP_ADAPTOR_TYPE2_MIN_TMDS_CLK 25 /* kHZ*/ #define DP_ADAPTOR_DVI_MAX_TMDS_CLK 165000 /* kHZ*/ #define DP_ADAPTOR_HDMI_SAFE_MAX_TMDS_CLK 165000 #define DDC_I2C_COMMAND_ENGINE I2C_COMMAND_ENGINE_SW enum edid_read_result { EDID_READ_RESULT_EDID_MATCH = 0, EDID_READ_RESULT_EDID_MISMATCH, EDID_READ_RESULT_CHECKSUM_READ_ERR, EDID_READ_RESULT_VENDOR_READ_ERR }; /* SCDC Address defines (HDMI 2.0)*/ #define HDMI_SCDC_WRITE_UPDATE_0_ARRAY 3 #define HDMI_SCDC_ADDRESS 0x54 #define HDMI_SCDC_SINK_VERSION 0x01 #define HDMI_SCDC_SOURCE_VERSION 0x02 #define HDMI_SCDC_UPDATE_0 0x10 #define HDMI_SCDC_TMDS_CONFIG 0x20 #define HDMI_SCDC_SCRAMBLER_STATUS 0x21 #define HDMI_SCDC_CONFIG_0 0x30 #define HDMI_SCDC_STATUS_FLAGS 0x40 #define HDMI_SCDC_ERR_DETECT 0x50 #define HDMI_SCDC_TEST_CONFIG 0xC0 union hdmi_scdc_update_read_data { uint8_t byte[2]; struct { uint8_t STATUS_UPDATE:1; uint8_t CED_UPDATE:1; uint8_t RR_TEST:1; uint8_t RESERVED:5; uint8_t RESERVED2:8; } fields; }; union hdmi_scdc_status_flags_data { uint8_t byte[2]; struct { uint8_t CLOCK_DETECTED:1; uint8_t CH0_LOCKED:1; uint8_t CH1_LOCKED:1; uint8_t CH2_LOCKED:1; uint8_t RESERVED:4; uint8_t RESERVED2:8; } fields; }; union hdmi_scdc_ced_data { uint8_t byte[7]; struct { uint8_t CH0_8LOW:8; uint8_t CH0_7HIGH:7; uint8_t CH0_VALID:1; uint8_t CH1_8LOW:8; uint8_t CH1_7HIGH:7; uint8_t CH1_VALID:1; uint8_t CH2_8LOW:8; uint8_t CH2_7HIGH:7; uint8_t CH2_VALID:1; uint8_t CHECKSUM:8; } fields; }; union hdmi_scdc_test_config_Data { uint8_t byte; struct { uint8_t TEST_READ_REQUEST_DELAY:7; uint8_t TEST_READ_REQUEST: 1; } fields; }; struct i2c_payloads { struct vector payloads; }; struct aux_payloads { struct vector payloads; }; struct i2c_payloads *dal_ddc_i2c_payloads_create(struct dc_context *ctx, uint32_t count) { struct i2c_payloads *payloads; payloads = dm_alloc(sizeof(struct i2c_payloads)); if (!payloads) return NULL; if (dal_vector_construct( &payloads->payloads, ctx, count, sizeof(struct i2c_payload))) return payloads; dm_free(payloads); return NULL; } struct i2c_payload *dal_ddc_i2c_payloads_get(struct i2c_payloads *p) { return (struct i2c_payload *)p->payloads.container; } uint32_t dal_ddc_i2c_payloads_get_count(struct i2c_payloads *p) { return p->payloads.count; } void dal_ddc_i2c_payloads_destroy(struct i2c_payloads **p) { if (!p || !*p) return; dal_vector_destruct(&(*p)->payloads); dm_free(*p); *p = NULL; } struct aux_payloads *dal_ddc_aux_payloads_create(struct dc_context *ctx, uint32_t count) { struct aux_payloads *payloads; payloads = dm_alloc(sizeof(struct aux_payloads)); if (!payloads) return NULL; if (dal_vector_construct( &payloads->payloads, ctx, count, sizeof(struct aux_payloads))) return payloads; dm_free(payloads); return NULL; } struct aux_payload *dal_ddc_aux_payloads_get(struct aux_payloads *p) { return (struct aux_payload *)p->payloads.container; } uint32_t dal_ddc_aux_payloads_get_count(struct aux_payloads *p) { return p->payloads.count; } void dal_ddc_aux_payloads_destroy(struct aux_payloads **p) { if (!p || !*p) return; dal_vector_destruct(&(*p)->payloads); dm_free(*p); *p = NULL; } #define DDC_MIN(a, b) (((a) < (b)) ? (a) : (b)) void dal_ddc_i2c_payloads_add( struct i2c_payloads *payloads, uint32_t address, uint32_t len, uint8_t *data, bool write) { uint32_t payload_size = EDID_SEGMENT_SIZE; uint32_t pos; for (pos = 0; pos < len; pos += payload_size) { struct i2c_payload payload = { .write = write, .address = address, .length = DDC_MIN(payload_size, len - pos), .data = data + pos }; dal_vector_append(&payloads->payloads, &payload); } } void dal_ddc_aux_payloads_add( struct aux_payloads *payloads, uint32_t address, uint32_t len, uint8_t *data, bool write) { uint32_t payload_size = DEFAULT_AUX_MAX_DATA_SIZE; uint32_t pos; for (pos = 0; pos < len; pos += payload_size) { struct aux_payload payload = { .i2c_over_aux = true, .write = write, .address = address, .length = DDC_MIN(payload_size, len - pos), .data = data + pos }; dal_vector_append(&payloads->payloads, &payload); } } static bool construct( struct ddc_service *ddc_service, struct ddc_service_init_data *init_data) { enum connector_id connector_id = dal_graphics_object_id_get_connector_id(init_data->id); struct gpio_service *gpio_service = init_data->ctx->gpio_service; struct graphics_object_i2c_info i2c_info; struct gpio_ddc_hw_info hw_info; struct dc_bios *dcb = init_data->ctx->dc_bios; ddc_service->link = init_data->link; ddc_service->ctx = init_data->ctx; if (BP_RESULT_OK != dcb->funcs->get_i2c_info(dcb, init_data->id, &i2c_info)) { ddc_service->ddc_pin = NULL; } else { hw_info.ddc_channel = i2c_info.i2c_line; hw_info.hw_supported = i2c_info.i2c_hw_assist; ddc_service->ddc_pin = dal_gpio_create_ddc( gpio_service, i2c_info.gpio_info.clk_a_register_index, 1 << i2c_info.gpio_info.clk_a_shift, &hw_info); } ddc_service->flags.EDID_QUERY_DONE_ONCE = false; ddc_service->flags.FORCE_READ_REPEATED_START = false; ddc_service->flags.EDID_STRESS_READ = false; ddc_service->flags.IS_INTERNAL_DISPLAY = connector_id == CONNECTOR_ID_EDP || connector_id == CONNECTOR_ID_LVDS; ddc_service->wa.raw = 0; return true; } struct ddc_service *dal_ddc_service_create( struct ddc_service_init_data *init_data) { struct ddc_service *ddc_service; ddc_service = dm_alloc(sizeof(struct ddc_service)); if (!ddc_service) return NULL; if (construct(ddc_service, init_data)) return ddc_service; dm_free(ddc_service); return NULL; } static void destruct(struct ddc_service *ddc) { if (ddc->ddc_pin) dal_gpio_destroy_ddc(&ddc->ddc_pin); } void dal_ddc_service_destroy(struct ddc_service **ddc) { if (!ddc || !*ddc) { BREAK_TO_DEBUGGER(); return; } destruct(*ddc); dm_free(*ddc); *ddc = NULL; } enum ddc_service_type dal_ddc_service_get_type(struct ddc_service *ddc) { return DDC_SERVICE_TYPE_CONNECTOR; } void dal_ddc_service_set_transaction_type( struct ddc_service *ddc, enum ddc_transaction_type type) { ddc->transaction_type = type; } bool dal_ddc_service_is_in_aux_transaction_mode(struct ddc_service *ddc) { switch (ddc->transaction_type) { case DDC_TRANSACTION_TYPE_I2C_OVER_AUX: case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER: case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_RETRY_DEFER: return true; default: break; } return false; } void ddc_service_set_dongle_type(struct ddc_service *ddc, enum display_dongle_type dongle_type) { ddc->dongle_type = dongle_type; } static uint32_t defer_delay_converter_wa( struct ddc_service *ddc, uint32_t defer_delay) { struct core_link *link = ddc->link; if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_4 && !memcmp(link->dpcd_caps.branch_dev_name, DP_DVI_CONVERTER_ID_4, sizeof(link->dpcd_caps.branch_dev_name))) return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY ? defer_delay : I2C_OVER_AUX_DEFER_WA_DELAY; return defer_delay; } #define DP_TRANSLATOR_DELAY 5 static uint32_t get_defer_delay(struct ddc_service *ddc) { uint32_t defer_delay = 0; switch (ddc->transaction_type) { case DDC_TRANSACTION_TYPE_I2C_OVER_AUX: if ((DISPLAY_DONGLE_DP_VGA_CONVERTER == ddc->dongle_type) || (DISPLAY_DONGLE_DP_DVI_CONVERTER == ddc->dongle_type) || (DISPLAY_DONGLE_DP_HDMI_CONVERTER == ddc->dongle_type)) { defer_delay = DP_TRANSLATOR_DELAY; defer_delay = defer_delay_converter_wa(ddc, defer_delay); } else /*sink has a delay different from an Active Converter*/ defer_delay = 0; break; case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER: defer_delay = DP_TRANSLATOR_DELAY; break; default: break; } return defer_delay; } static bool i2c_read( struct ddc_service *ddc, uint32_t address, uint8_t *buffer, uint32_t len) { uint8_t offs_data = 0; struct i2c_payload payloads[2] = { { .write = true, .address = address, .length = 1, .data = &offs_data }, { .write = false, .address = address, .length = len, .data = buffer } }; struct i2c_command command = { .payloads = payloads, .number_of_payloads = 2, .engine = DDC_I2C_COMMAND_ENGINE, .speed = ddc->ctx->dc->caps.i2c_speed_in_khz }; return dm_helpers_submit_i2c( ddc->ctx, &ddc->link->public, &command); } static uint8_t aux_read_edid_block( struct ddc_service *ddc, uint8_t address, uint8_t index, uint8_t *buf) { struct aux_command cmd = { .payloads = NULL, .number_of_payloads = 0, .defer_delay = get_defer_delay(ddc), .max_defer_write_retry = 0 }; uint8_t retrieved = 0; uint8_t base_offset = (index % DDC_EDID_BLOCKS_PER_SEGMENT) * DDC_EDID_BLOCK_SIZE; uint8_t segment = index / DDC_EDID_BLOCKS_PER_SEGMENT; for (retrieved = 0; retrieved < DDC_EDID_BLOCK_SIZE; retrieved += DEFAULT_AUX_MAX_DATA_SIZE) { uint8_t offset = base_offset + retrieved; struct aux_payload payloads[3] = { { .i2c_over_aux = true, .write = true, .address = DDC_EDID_SEGMENT_ADDRESS, .length = 1, .data = &segment }, { .i2c_over_aux = true, .write = true, .address = address, .length = 1, .data = &offset }, { .i2c_over_aux = true, .write = false, .address = address, .length = DEFAULT_AUX_MAX_DATA_SIZE, .data = &buf[retrieved] } }; if (segment == 0) { cmd.payloads = &payloads[1]; cmd.number_of_payloads = 2; } else { cmd.payloads = payloads; cmd.number_of_payloads = 3; } if (!dal_i2caux_submit_aux_command( ddc->ctx->i2caux, ddc->ddc_pin, &cmd)) /* cannot read, break*/ break; } /* Reset segment to 0. Needed by some panels */ if (0 != segment) { struct aux_payload payloads[1] = { { .i2c_over_aux = true, .write = true, .address = DDC_EDID_SEGMENT_ADDRESS, .length = 1, .data = &segment } }; bool result = false; segment = 0; cmd.number_of_payloads = ARRAY_SIZE(payloads); cmd.payloads = payloads; result = dal_i2caux_submit_aux_command( ddc->ctx->i2caux, ddc->ddc_pin, &cmd); if (false == result) dm_logger_write( ddc->ctx->logger, LOG_ERROR, "%s: Writing of EDID Segment (0x30) failed!\n", __func__); } return retrieved; } static uint8_t i2c_read_edid_block( struct ddc_service *ddc, uint8_t address, uint8_t index, uint8_t *buf) { bool ret = false; uint8_t offset = (index % DDC_EDID_BLOCKS_PER_SEGMENT) * DDC_EDID_BLOCK_SIZE; uint8_t segment = index / DDC_EDID_BLOCKS_PER_SEGMENT; struct i2c_command cmd = { .payloads = NULL, .number_of_payloads = 0, .engine = DDC_I2C_COMMAND_ENGINE, .speed = ddc->ctx->dc->caps.i2c_speed_in_khz }; struct i2c_payload payloads[3] = { { .write = true, .address = DDC_EDID_SEGMENT_ADDRESS, .length = 1, .data = &segment }, { .write = true, .address = address, .length = 1, .data = &offset }, { .write = false, .address = address, .length = DDC_EDID_BLOCK_SIZE, .data = buf } }; /* * Some I2C engines don't handle stop/start between write-offset and read-data * commands properly. For those displays, we have to force the newer E-DDC * behavior of repeated-start which can be enabled by runtime parameter. */ /* Originally implemented for OnLive using NXP receiver chip */ if (index == 0 && !ddc->flags.FORCE_READ_REPEATED_START) { /* base block, use use DDC2B, submit as 2 commands */ cmd.payloads = &payloads[1]; cmd.number_of_payloads = 1; if (dm_helpers_submit_i2c( ddc->ctx, &ddc->link->public, &cmd)) { cmd.payloads = &payloads[2]; cmd.number_of_payloads = 1; ret = dm_helpers_submit_i2c( ddc->ctx, &ddc->link->public, &cmd); } } else { /* * extension block use E-DDC, submit as 1 command * or if repeated-start is forced by runtime parameter */ if (segment != 0) { /* include segment offset in command*/ cmd.payloads = payloads; cmd.number_of_payloads = 3; } else { /* we are reading first segment, * segment offset is not required */ cmd.payloads = &payloads[1]; cmd.number_of_payloads = 2; } ret = dm_helpers_submit_i2c( ddc->ctx, &ddc->link->public, &cmd); } return ret ? DDC_EDID_BLOCK_SIZE : 0; } static uint32_t query_edid_block( struct ddc_service *ddc, uint8_t address, uint8_t index, uint8_t *buf, uint32_t size) { uint32_t size_retrieved = 0; if (size < DDC_EDID_BLOCK_SIZE) return 0; if (dal_ddc_service_is_in_aux_transaction_mode(ddc)) { size_retrieved = aux_read_edid_block(ddc, address, index, buf); } else { size_retrieved = i2c_read_edid_block(ddc, address, index, buf); } return size_retrieved; } #define DDC_DPCD_EDID_CHECKSUM_WRITE_ADDRESS 0x261 #define DDC_TEST_ACK_ADDRESS 0x260 #define DDC_DPCD_EDID_TEST_ACK 0x04 #define DDC_DPCD_EDID_TEST_MASK 0x04 #define DDC_DPCD_TEST_REQUEST_ADDRESS 0x218 /* AG TODO GO throug DM callback here like for DPCD */ static void write_dp_edid_checksum( struct ddc_service *ddc, uint8_t checksum) { uint8_t dpcd_data; dal_ddc_service_read_dpcd_data( ddc, DDC_DPCD_TEST_REQUEST_ADDRESS, &dpcd_data, 1); if (dpcd_data & DDC_DPCD_EDID_TEST_MASK) { dal_ddc_service_write_dpcd_data( ddc, DDC_DPCD_EDID_CHECKSUM_WRITE_ADDRESS, &checksum, 1); dpcd_data = DDC_DPCD_EDID_TEST_ACK; dal_ddc_service_write_dpcd_data( ddc, DDC_TEST_ACK_ADDRESS, &dpcd_data, 1); } } uint32_t dal_ddc_service_edid_query(struct ddc_service *ddc) { uint32_t bytes_read = 0; uint32_t ext_cnt = 0; uint8_t address; uint32_t i; for (address = DDC_EDID_ADDRESS_START; address <= DDC_EDID_ADDRESS_END; ++address) { bytes_read = query_edid_block( ddc, address, 0, ddc->edid_buf, sizeof(ddc->edid_buf) - bytes_read); if (bytes_read != DDC_EDID_BLOCK_SIZE) continue; /* get the number of ext blocks*/ ext_cnt = ddc->edid_buf[DDC_EDID_EXT_COUNT_OFFSET]; /* EDID 2.0, need to read 1 more block because EDID2.0 is * 256 byte in size*/ if (ddc->edid_buf[DDC_EDID_20_SIGNATURE_OFFSET] == DDC_EDID_20_SIGNATURE) ext_cnt = 1; for (i = 0; i < ext_cnt; i++) { /* read additional ext blocks accordingly */ bytes_read += query_edid_block( ddc, address, i+1, &ddc->edid_buf[bytes_read], sizeof(ddc->edid_buf) - bytes_read); } /*this is special code path for DP compliance*/ if (DDC_TRANSACTION_TYPE_I2C_OVER_AUX == ddc->transaction_type) write_dp_edid_checksum( ddc, ddc->edid_buf[(ext_cnt * DDC_EDID_BLOCK_SIZE) + DDC_EDID1X_CHECKSUM_OFFSET]); /*remembers the address where we fetch the EDID from * for later signature check use */ ddc->address = address; break;/* already read edid, done*/ } ddc->edid_buf_len = bytes_read; return bytes_read; } uint32_t dal_ddc_service_get_edid_buf_len(struct ddc_service *ddc) { return ddc->edid_buf_len; } void dal_ddc_service_get_edid_buf(struct ddc_service *ddc, uint8_t *edid_buf) { memmove(edid_buf, ddc->edid_buf, ddc->edid_buf_len); } void dal_ddc_service_i2c_query_dp_dual_mode_adaptor( struct ddc_service *ddc, struct display_sink_capability *sink_cap) { uint8_t i; bool is_valid_hdmi_signature; enum display_dongle_type *dongle = &sink_cap->dongle_type; uint8_t type2_dongle_buf[DP_ADAPTOR_TYPE2_SIZE]; bool is_type2_dongle = false; struct dp_hdmi_dongle_signature_data *dongle_signature; /* Assume we have no valid DP passive dongle connected */ *dongle = DISPLAY_DONGLE_NONE; sink_cap->max_hdmi_pixel_clock = DP_ADAPTOR_HDMI_SAFE_MAX_TMDS_CLK; /* Read DP-HDMI dongle I2c (no response interpreted as DP-DVI dongle)*/ if (!i2c_read( ddc, DP_HDMI_DONGLE_ADDRESS, type2_dongle_buf, sizeof(type2_dongle_buf))) { *dongle = DISPLAY_DONGLE_DP_DVI_DONGLE; sink_cap->max_hdmi_pixel_clock = DP_ADAPTOR_DVI_MAX_TMDS_CLK; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "DP-DVI passive dongle %dMhz: ", DP_ADAPTOR_DVI_MAX_TMDS_CLK / 1000); return; } /* Check if Type 2 dongle.*/ if (type2_dongle_buf[DP_ADAPTOR_TYPE2_REG_ID] == DP_ADAPTOR_TYPE2_ID) is_type2_dongle = true; dongle_signature = (struct dp_hdmi_dongle_signature_data *)type2_dongle_buf; is_valid_hdmi_signature = true; /* Check EOT */ if (dongle_signature->eot != DP_HDMI_DONGLE_SIGNATURE_EOT) { is_valid_hdmi_signature = false; } /* Check signature */ for (i = 0; i < sizeof(dongle_signature->id); ++i) { /* If its not the right signature, * skip mismatch in subversion byte.*/ if (dongle_signature->id[i] != dp_hdmi_dongle_signature_str[i] && i != 3) { if (is_type2_dongle) { is_valid_hdmi_signature = false; break; } } } if (is_type2_dongle) { uint32_t max_tmds_clk = type2_dongle_buf[DP_ADAPTOR_TYPE2_REG_MAX_TMDS_CLK]; max_tmds_clk = max_tmds_clk * 2 + max_tmds_clk / 2; if (0 == max_tmds_clk || max_tmds_clk < DP_ADAPTOR_TYPE2_MIN_TMDS_CLK || max_tmds_clk > DP_ADAPTOR_TYPE2_MAX_TMDS_CLK) { *dongle = DISPLAY_DONGLE_DP_DVI_DONGLE; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "DP-DVI passive dongle %dMhz: ", DP_ADAPTOR_DVI_MAX_TMDS_CLK / 1000); } else { if (is_valid_hdmi_signature == true) { *dongle = DISPLAY_DONGLE_DP_HDMI_DONGLE; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "Type 2 DP-HDMI passive dongle %dMhz: ", max_tmds_clk); } else { *dongle = DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "Type 2 DP-HDMI passive dongle (no signature) %dMhz: ", max_tmds_clk); } /* Multiply by 1000 to convert to kHz. */ sink_cap->max_hdmi_pixel_clock = max_tmds_clk * 1000; } } else { if (is_valid_hdmi_signature == true) { *dongle = DISPLAY_DONGLE_DP_HDMI_DONGLE; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "Type 1 DP-HDMI passive dongle %dMhz: ", sink_cap->max_hdmi_pixel_clock / 1000); } else { *dongle = DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE; CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf), "Type 1 DP-HDMI passive dongle (no signature) %dMhz: ", sink_cap->max_hdmi_pixel_clock / 1000); } } return; } enum { DP_SINK_CAP_SIZE = DPCD_ADDRESS_EDP_CONFIG_CAP - DPCD_ADDRESS_DPCD_REV + 1 }; bool dal_ddc_service_query_ddc_data( struct ddc_service *ddc, uint32_t address, uint8_t *write_buf, uint32_t write_size, uint8_t *read_buf, uint32_t read_size) { bool ret; uint32_t payload_size = dal_ddc_service_is_in_aux_transaction_mode(ddc) ? DEFAULT_AUX_MAX_DATA_SIZE : EDID_SEGMENT_SIZE; uint32_t write_payloads = (write_size + payload_size - 1) / payload_size; uint32_t read_payloads = (read_size + payload_size - 1) / payload_size; uint32_t payloads_num = write_payloads + read_payloads; if (write_size > EDID_SEGMENT_SIZE || read_size > EDID_SEGMENT_SIZE) return false; /*TODO: len of payload data for i2c and aux is uint8!!!!, * but we want to read 256 over i2c!!!!*/ if (dal_ddc_service_is_in_aux_transaction_mode(ddc)) { struct aux_payloads *payloads = dal_ddc_aux_payloads_create(ddc->ctx, payloads_num); struct aux_command command = { .payloads = dal_ddc_aux_payloads_get(payloads), .number_of_payloads = 0, .defer_delay = get_defer_delay(ddc), .max_defer_write_retry = 0 }; dal_ddc_aux_payloads_add( payloads, address, write_size, write_buf, true); dal_ddc_aux_payloads_add( payloads, address, read_size, read_buf, false); command.number_of_payloads = dal_ddc_aux_payloads_get_count(payloads); ret = dal_i2caux_submit_aux_command( ddc->ctx->i2caux, ddc->ddc_pin, &command); dal_ddc_aux_payloads_destroy(&payloads); } else { struct i2c_payloads *payloads = dal_ddc_i2c_payloads_create(ddc->ctx, payloads_num); struct i2c_command command = { .payloads = dal_ddc_i2c_payloads_get(payloads), .number_of_payloads = 0, .engine = DDC_I2C_COMMAND_ENGINE, .speed = ddc->ctx->dc->caps.i2c_speed_in_khz }; dal_ddc_i2c_payloads_add( payloads, address, write_size, write_buf, true); dal_ddc_i2c_payloads_add( payloads, address, read_size, read_buf, false); command.number_of_payloads = dal_ddc_i2c_payloads_get_count(payloads); ret = dm_helpers_submit_i2c( ddc->ctx, &ddc->link->public, &command); dal_ddc_i2c_payloads_destroy(&payloads); } return ret; } enum ddc_result dal_ddc_service_read_dpcd_data( struct ddc_service *ddc, uint32_t address, uint8_t *data, uint32_t len) { struct aux_payload read_payload = { .i2c_over_aux = false, .write = false, .address = address, .length = len, .data = data, }; struct aux_command command = { .payloads = &read_payload, .number_of_payloads = 1, .defer_delay = 0, .max_defer_write_retry = 0, }; if (len > DEFAULT_AUX_MAX_DATA_SIZE) { BREAK_TO_DEBUGGER(); return DDC_RESULT_FAILED_INVALID_OPERATION; } if (dal_i2caux_submit_aux_command( ddc->ctx->i2caux, ddc->ddc_pin, &command)) return DDC_RESULT_SUCESSFULL; return DDC_RESULT_FAILED_OPERATION; } enum ddc_result dal_ddc_service_write_dpcd_data( struct ddc_service *ddc, uint32_t address, const uint8_t *data, uint32_t len) { struct aux_payload write_payload = { .i2c_over_aux = false, .write = true, .address = address, .length = len, .data = (uint8_t *)data, }; struct aux_command command = { .payloads = &write_payload, .number_of_payloads = 1, .defer_delay = 0, .max_defer_write_retry = 0, }; if (len > DEFAULT_AUX_MAX_DATA_SIZE) { BREAK_TO_DEBUGGER(); return DDC_RESULT_FAILED_INVALID_OPERATION; } if (dal_i2caux_submit_aux_command( ddc->ctx->i2caux, ddc->ddc_pin, &command)) return DDC_RESULT_SUCESSFULL; return DDC_RESULT_FAILED_OPERATION; } /*test only function*/ void dal_ddc_service_set_ddc_pin( struct ddc_service *ddc_service, struct ddc *ddc) { ddc_service->ddc_pin = ddc; } struct ddc *dal_ddc_service_get_ddc_pin(struct ddc_service *ddc_service) { return ddc_service->ddc_pin; } void dal_ddc_service_write_scdc_data(struct ddc_service *ddc_service, uint32_t pix_clk, bool lte_340_scramble) { bool over_340_mhz = pix_clk > 340000 ? 1 : 0; uint8_t slave_address = HDMI_SCDC_ADDRESS; uint8_t offset = HDMI_SCDC_SINK_VERSION; uint8_t sink_version = 0; uint8_t write_buffer[2] = {0}; /*Lower than 340 Scramble bit from SCDC caps*/ dal_ddc_service_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &sink_version, sizeof(sink_version)); if (sink_version == 1) { /*Source Version = 1*/ write_buffer[0] = HDMI_SCDC_SOURCE_VERSION; write_buffer[1] = 1; dal_ddc_service_query_ddc_data(ddc_service, slave_address, write_buffer, sizeof(write_buffer), NULL, 0); /*Read Request from SCDC caps*/ } write_buffer[0] = HDMI_SCDC_TMDS_CONFIG; if (over_340_mhz) { write_buffer[1] = 3; } else if (lte_340_scramble) { write_buffer[1] = 1; } else { write_buffer[1] = 0; } dal_ddc_service_query_ddc_data(ddc_service, slave_address, write_buffer, sizeof(write_buffer), NULL, 0); } void dal_ddc_service_read_scdc_data(struct ddc_service *ddc_service) { uint8_t slave_address = HDMI_SCDC_ADDRESS; uint8_t offset = HDMI_SCDC_TMDS_CONFIG; uint8_t tmds_config = 0; dal_ddc_service_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &tmds_config, sizeof(tmds_config)); if (tmds_config & 0x1) { union hdmi_scdc_status_flags_data status_data = { {0} }; uint8_t scramble_status = 0; offset = HDMI_SCDC_SCRAMBLER_STATUS; dal_ddc_service_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), &scramble_status, sizeof(scramble_status)); offset = HDMI_SCDC_STATUS_FLAGS; dal_ddc_service_query_ddc_data(ddc_service, slave_address, &offset, sizeof(offset), status_data.byte, sizeof(status_data.byte)); } }