// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include #include #include #include #include "regs/xe_gt_regs.h" #include "regs/xe_mchbar_regs.h" #include "regs/xe_pcode_regs.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_hwmon.h" #include "xe_mmio.h" #include "xe_pcode.h" #include "xe_pcode_api.h" #include "xe_sriov.h" enum xe_hwmon_reg { REG_PKG_RAPL_LIMIT, REG_PKG_POWER_SKU, REG_PKG_POWER_SKU_UNIT, REG_GT_PERF_STATUS, REG_PKG_ENERGY_STATUS, }; enum xe_hwmon_reg_operation { REG_READ32, REG_RMW32, REG_READ64, }; /* * SF_* - scale factors for particular quantities according to hwmon spec. */ #define SF_POWER 1000000 /* microwatts */ #define SF_CURR 1000 /* milliamperes */ #define SF_VOLTAGE 1000 /* millivolts */ #define SF_ENERGY 1000000 /* microjoules */ #define SF_TIME 1000 /* milliseconds */ /** * struct xe_hwmon_energy_info - to accumulate energy */ struct xe_hwmon_energy_info { /** @reg_val_prev: previous energy reg val */ u32 reg_val_prev; /** @accum_energy: accumulated energy */ long accum_energy; }; /** * struct xe_hwmon - xe hwmon data structure */ struct xe_hwmon { /** @hwmon_dev: hwmon device for xe */ struct device *hwmon_dev; /** @gt: primary gt */ struct xe_gt *gt; /** @hwmon_lock: lock for rw attributes*/ struct mutex hwmon_lock; /** @scl_shift_power: pkg power unit */ int scl_shift_power; /** @scl_shift_energy: pkg energy unit */ int scl_shift_energy; /** @scl_shift_time: pkg time unit */ int scl_shift_time; /** @ei: Energy info for energy1_input */ struct xe_hwmon_energy_info ei; }; static u32 xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg) { struct xe_device *xe = gt_to_xe(hwmon->gt); struct xe_reg reg = XE_REG(0); switch (hwmon_reg) { case REG_PKG_RAPL_LIMIT: if (xe->info.platform == XE_PVC) reg = PVC_GT0_PACKAGE_RAPL_LIMIT; else if (xe->info.platform == XE_DG2) reg = PCU_CR_PACKAGE_RAPL_LIMIT; break; case REG_PKG_POWER_SKU: if (xe->info.platform == XE_PVC) reg = PVC_GT0_PACKAGE_POWER_SKU; else if (xe->info.platform == XE_DG2) reg = PCU_CR_PACKAGE_POWER_SKU; break; case REG_PKG_POWER_SKU_UNIT: if (xe->info.platform == XE_PVC) reg = PVC_GT0_PACKAGE_POWER_SKU_UNIT; else if (xe->info.platform == XE_DG2) reg = PCU_CR_PACKAGE_POWER_SKU_UNIT; break; case REG_GT_PERF_STATUS: if (xe->info.platform == XE_DG2) reg = GT_PERF_STATUS; break; case REG_PKG_ENERGY_STATUS: if (xe->info.platform == XE_PVC) reg = PVC_GT0_PLATFORM_ENERGY_STATUS; else if (xe->info.platform == XE_DG2) reg = PCU_CR_PACKAGE_ENERGY_STATUS; break; default: drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg); break; } return reg.raw; } static void xe_hwmon_process_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg, enum xe_hwmon_reg_operation operation, u64 *value, u32 clr, u32 set) { struct xe_reg reg; reg.raw = xe_hwmon_get_reg(hwmon, hwmon_reg); if (!reg.raw) return; switch (operation) { case REG_READ32: *value = xe_mmio_read32(hwmon->gt, reg); break; case REG_RMW32: *value = xe_mmio_rmw32(hwmon->gt, reg, clr, set); break; case REG_READ64: *value = xe_mmio_read64_2x32(hwmon->gt, reg); break; default: drm_warn(>_to_xe(hwmon->gt)->drm, "Invalid xe hwmon reg operation: %d\n", operation); break; } } #define PL1_DISABLE 0 /* * HW allows arbitrary PL1 limits to be set but silently clamps these values to * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the * same pattern for sysfs, allow arbitrary PL1 limits to be set but display * clamped values when read. */ static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, long *value) { u64 reg_val, min, max; mutex_lock(&hwmon->hwmon_lock); xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, 0, 0); /* Check if PL1 limit is disabled */ if (!(reg_val & PKG_PWR_LIM_1_EN)) { *value = PL1_DISABLE; goto unlock; } reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val); *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ64, ®_val, 0, 0); min = REG_FIELD_GET(PKG_MIN_PWR, reg_val); min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power); max = REG_FIELD_GET(PKG_MAX_PWR, reg_val); max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power); if (min && max) *value = clamp_t(u64, *value, min, max); unlock: mutex_unlock(&hwmon->hwmon_lock); } static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, long value) { int ret = 0; u64 reg_val; mutex_lock(&hwmon->hwmon_lock); /* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */ if (value == PL1_DISABLE) { xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, PKG_PWR_LIM_1_EN, 0); xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, PKG_PWR_LIM_1_EN, 0); if (reg_val & PKG_PWR_LIM_1_EN) { ret = -EOPNOTSUPP; goto unlock; } } /* Computation in 64-bits to avoid overflow. Round to nearest. */ reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER); reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val); xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val, PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val); unlock: mutex_unlock(&hwmon->hwmon_lock); return ret; } static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, long *value) { u64 reg_val; xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ32, ®_val, 0, 0); reg_val = REG_FIELD_GET(PKG_TDP, reg_val); *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power); } /* * xe_hwmon_energy_get - Obtain energy value * * The underlying energy hardware register is 32-bits and is subject to * overflow. How long before overflow? For example, with an example * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and * a power draw of 1000 watts, the 32-bit counter will overflow in * approximately 4.36 minutes. * * Examples: * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes * * The function significantly increases overflow duration (from 4.36 * minutes) by accumulating the energy register into a 'long' as allowed by * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before * energy1_input overflows. This at 1000 W is an overflow duration of 278 years. */ static void xe_hwmon_energy_get(struct xe_hwmon *hwmon, long *energy) { struct xe_hwmon_energy_info *ei = &hwmon->ei; u64 reg_val; xe_hwmon_process_reg(hwmon, REG_PKG_ENERGY_STATUS, REG_READ32, ®_val, 0, 0); if (reg_val >= ei->reg_val_prev) ei->accum_energy += reg_val - ei->reg_val_prev; else ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; ei->reg_val_prev = reg_val; *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, hwmon->scl_shift_energy); } static ssize_t xe_hwmon_power1_max_interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_hwmon *hwmon = dev_get_drvdata(dev); u32 x, y, x_w = 2; /* 2 bits */ u64 r, tau4, out; xe_device_mem_access_get(gt_to_xe(hwmon->gt)); mutex_lock(&hwmon->hwmon_lock); xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, &r, 0, 0); mutex_unlock(&hwmon->hwmon_lock); xe_device_mem_access_put(gt_to_xe(hwmon->gt)); x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); /* * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) * = (4 | x) << (y - 2) * * Here (y - 2) ensures a 1.x fixed point representation of 1.x * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75 * * As y can be < 2, we compute tau4 = (4 | x) << y * and then add 2 when doing the final right shift to account for units */ tau4 = (u64)((1 << x_w) | x) << y; /* val in hwmon interface units (millisec) */ out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); return sysfs_emit(buf, "%llu\n", out); } static ssize_t xe_hwmon_power1_max_interval_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct xe_hwmon *hwmon = dev_get_drvdata(dev); u32 x, y, rxy, x_w = 2; /* 2 bits */ u64 tau4, r, max_win; unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; /* * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12. * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds. * * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register. * However, it is observed that existing discrete GPUs does not provide correct * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU. */ #define PKG_MAX_WIN_DEFAULT 0x12ull /* * val must be < max in hwmon interface units. The steps below are * explained in xe_hwmon_power1_max_interval_show() */ r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); x = REG_FIELD_GET(PKG_MAX_WIN_X, r); y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); tau4 = (u64)((1 << x_w) | x) << y; max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); if (val > max_win) return -EINVAL; /* val in hw units */ val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); /* * Convert val to 1.x * power(2,y) * y = ilog2(val) * x = (val - (1 << y)) >> (y - 2) */ if (!val) { y = 0; x = 0; } else { y = ilog2(val); x = (val - (1ul << y)) << x_w >> y; } rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); xe_device_mem_access_get(gt_to_xe(hwmon->gt)); mutex_lock(&hwmon->hwmon_lock); xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, (u64 *)&r, PKG_PWR_LIM_1_TIME, rxy); mutex_unlock(&hwmon->hwmon_lock); xe_device_mem_access_put(gt_to_xe(hwmon->gt)); return count; } static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, xe_hwmon_power1_max_interval_show, xe_hwmon_power1_max_interval_store, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_power1_max_interval.dev_attr.attr, NULL }; static umode_t xe_hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct xe_hwmon *hwmon = dev_get_drvdata(dev); int ret = 0; xe_device_mem_access_get(gt_to_xe(hwmon->gt)); if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr) ret = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? attr->mode : 0; xe_device_mem_access_put(gt_to_xe(hwmon->gt)); return ret; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = xe_hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; static const struct hwmon_channel_info * const hwmon_info[] = { HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT), HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT), HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), NULL }; /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval) { /* Avoid Illegal Subcommand error */ if (gt_to_xe(gt)->info.platform == XE_DG2) return -ENXIO; return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP, POWER_SETUP_SUBCOMMAND_READ_I1, 0), uval, NULL); } static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval) { return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP, POWER_SETUP_SUBCOMMAND_WRITE_I1, 0), uval); } static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, long *value, u32 scale_factor) { int ret; u32 uval; mutex_lock(&hwmon->hwmon_lock); ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval); if (ret) goto unlock; *value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), scale_factor, POWER_SETUP_I1_SHIFT); unlock: mutex_unlock(&hwmon->hwmon_lock); return ret; } static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, long value, u32 scale_factor) { int ret; u32 uval; mutex_lock(&hwmon->hwmon_lock); uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor); ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval); mutex_unlock(&hwmon->hwmon_lock); return ret; } static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, long *value) { u64 reg_val; xe_hwmon_process_reg(hwmon, REG_GT_PERF_STATUS, REG_READ32, ®_val, 0, 0); /* HW register value in units of 2.5 millivolt */ *value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE); } static umode_t xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int chan) { u32 uval; switch (attr) { case hwmon_power_max: return xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? 0664 : 0; case hwmon_power_rated_max: return xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU) ? 0444 : 0; case hwmon_power_crit: return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; default: return 0; } } static int xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int chan, long *val) { switch (attr) { case hwmon_power_max: xe_hwmon_power_max_read(hwmon, val); return 0; case hwmon_power_rated_max: xe_hwmon_power_rated_max_read(hwmon, val); return 0; case hwmon_power_crit: return xe_hwmon_power_curr_crit_read(hwmon, val, SF_POWER); default: return -EOPNOTSUPP; } } static int xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int chan, long val) { switch (attr) { case hwmon_power_max: return xe_hwmon_power_max_write(hwmon, val); case hwmon_power_crit: return xe_hwmon_power_curr_crit_write(hwmon, val, SF_POWER); default: return -EOPNOTSUPP; } } static umode_t xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr) { u32 uval; switch (attr) { case hwmon_curr_crit: return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) || (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; default: return 0; } } static int xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, long *val) { switch (attr) { case hwmon_curr_crit: return xe_hwmon_power_curr_crit_read(hwmon, val, SF_CURR); default: return -EOPNOTSUPP; } } static int xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, long val) { switch (attr) { case hwmon_curr_crit: return xe_hwmon_power_curr_crit_write(hwmon, val, SF_CURR); default: return -EOPNOTSUPP; } } static umode_t xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr) { switch (attr) { case hwmon_in_input: return xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS) ? 0444 : 0; default: return 0; } } static int xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, long *val) { switch (attr) { case hwmon_in_input: xe_hwmon_get_voltage(hwmon, val); return 0; default: return -EOPNOTSUPP; } } static umode_t xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr) { switch (attr) { case hwmon_energy_input: return xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS) ? 0444 : 0; default: return 0; } } static int xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, long *val) { switch (attr) { case hwmon_energy_input: xe_hwmon_energy_get(hwmon, val); return 0; default: return -EOPNOTSUPP; } } static umode_t xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata; int ret; xe_device_mem_access_get(gt_to_xe(hwmon->gt)); switch (type) { case hwmon_power: ret = xe_hwmon_power_is_visible(hwmon, attr, channel); break; case hwmon_curr: ret = xe_hwmon_curr_is_visible(hwmon, attr); break; case hwmon_in: ret = xe_hwmon_in_is_visible(hwmon, attr); break; case hwmon_energy: ret = xe_hwmon_energy_is_visible(hwmon, attr); break; default: ret = 0; break; } xe_device_mem_access_put(gt_to_xe(hwmon->gt)); return ret; } static int xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct xe_hwmon *hwmon = dev_get_drvdata(dev); int ret; xe_device_mem_access_get(gt_to_xe(hwmon->gt)); switch (type) { case hwmon_power: ret = xe_hwmon_power_read(hwmon, attr, channel, val); break; case hwmon_curr: ret = xe_hwmon_curr_read(hwmon, attr, val); break; case hwmon_in: ret = xe_hwmon_in_read(hwmon, attr, val); break; case hwmon_energy: ret = xe_hwmon_energy_read(hwmon, attr, val); break; default: ret = -EOPNOTSUPP; break; } xe_device_mem_access_put(gt_to_xe(hwmon->gt)); return ret; } static int xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct xe_hwmon *hwmon = dev_get_drvdata(dev); int ret; xe_device_mem_access_get(gt_to_xe(hwmon->gt)); switch (type) { case hwmon_power: ret = xe_hwmon_power_write(hwmon, attr, channel, val); break; case hwmon_curr: ret = xe_hwmon_curr_write(hwmon, attr, val); break; default: ret = -EOPNOTSUPP; break; } xe_device_mem_access_put(gt_to_xe(hwmon->gt)); return ret; } static const struct hwmon_ops hwmon_ops = { .is_visible = xe_hwmon_is_visible, .read = xe_hwmon_read, .write = xe_hwmon_write, }; static const struct hwmon_chip_info hwmon_chip_info = { .ops = &hwmon_ops, .info = hwmon_info, }; static void xe_hwmon_get_preregistration_info(struct xe_device *xe) { struct xe_hwmon *hwmon = xe->hwmon; long energy; u64 val_sku_unit = 0; /* * The contents of register PKG_POWER_SKU_UNIT do not change, * so read it once and store the shift values. */ if (xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT)) { xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU_UNIT, REG_READ32, &val_sku_unit, 0, 0); hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); } /* * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the * first value of the energy register read */ if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, 0)) xe_hwmon_energy_get(hwmon, &energy); } static void xe_hwmon_mutex_destroy(void *arg) { struct xe_hwmon *hwmon = arg; mutex_destroy(&hwmon->hwmon_lock); } void xe_hwmon_register(struct xe_device *xe) { struct device *dev = xe->drm.dev; struct xe_hwmon *hwmon; /* hwmon is available only for dGfx */ if (!IS_DGFX(xe)) return; /* hwmon is not available on VFs */ if (IS_SRIOV_VF(xe)) return; hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); if (!hwmon) return; xe->hwmon = hwmon; mutex_init(&hwmon->hwmon_lock); if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon)) return; /* primary GT to access device level properties */ hwmon->gt = xe->tiles[0].primary_gt; xe_hwmon_get_preregistration_info(xe); drm_dbg(&xe->drm, "Register xe hwmon interface\n"); /* hwmon_dev points to device hwmon */ hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon, &hwmon_chip_info, hwmon_groups); if (IS_ERR(hwmon->hwmon_dev)) { drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev); xe->hwmon = NULL; return; } }