/* * V4L2 fwnode binding parsing library * * The origins of the V4L2 fwnode library are in V4L2 OF library that * formerly was located in v4l2-of.c. * * Copyright (c) 2016 Intel Corporation. * Author: Sakari Ailus * * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd. * Author: Sylwester Nawrocki * * Copyright (C) 2012 Renesas Electronics Corp. * Author: Guennadi Liakhovetski * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include enum v4l2_fwnode_bus_type { V4L2_FWNODE_BUS_TYPE_GUESS = 0, V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, V4L2_FWNODE_BUS_TYPE_CSI1, V4L2_FWNODE_BUS_TYPE_CCP2, NR_OF_V4L2_FWNODE_BUS_TYPE, }; static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep) { struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2; bool have_clk_lane = false; unsigned int flags = 0, lanes_used = 0; unsigned int i; u32 v; int rval; rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0); if (rval > 0) { u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES]; bus->num_data_lanes = min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval); fwnode_property_read_u32_array(fwnode, "data-lanes", array, bus->num_data_lanes); for (i = 0; i < bus->num_data_lanes; i++) { if (lanes_used & BIT(array[i])) pr_warn("duplicated lane %u in data-lanes\n", array[i]); lanes_used |= BIT(array[i]); bus->data_lanes[i] = array[i]; } rval = fwnode_property_read_u32_array(fwnode, "lane-polarities", NULL, 0); if (rval > 0) { if (rval != 1 + bus->num_data_lanes /* clock+data */) { pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n", 1 + bus->num_data_lanes, rval); return -EINVAL; } fwnode_property_read_u32_array(fwnode, "lane-polarities", array, 1 + bus->num_data_lanes); for (i = 0; i < 1 + bus->num_data_lanes; i++) bus->lane_polarities[i] = array[i]; } } if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { if (lanes_used & BIT(v)) pr_warn("duplicated lane %u in clock-lanes\n", v); lanes_used |= BIT(v); bus->clock_lane = v; have_clk_lane = true; } if (fwnode_property_present(fwnode, "clock-noncontinuous")) flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK; else if (have_clk_lane || bus->num_data_lanes > 0) flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK; bus->flags = flags; vep->bus_type = V4L2_MBUS_CSI2; return 0; } static void v4l2_fwnode_endpoint_parse_parallel_bus( struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep) { struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel; unsigned int flags = 0; u32 v; if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH : V4L2_MBUS_HSYNC_ACTIVE_LOW; if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH : V4L2_MBUS_VSYNC_ACTIVE_LOW; if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH : V4L2_MBUS_FIELD_EVEN_LOW; if (flags) vep->bus_type = V4L2_MBUS_PARALLEL; else vep->bus_type = V4L2_MBUS_BT656; if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING : V4L2_MBUS_PCLK_SAMPLE_FALLING; if (!fwnode_property_read_u32(fwnode, "data-active", &v)) flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH : V4L2_MBUS_DATA_ACTIVE_LOW; if (fwnode_property_present(fwnode, "slave-mode")) flags |= V4L2_MBUS_SLAVE; else flags |= V4L2_MBUS_MASTER; if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) bus->bus_width = v; if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) bus->data_shift = v; if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH : V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW; bus->flags = flags; } static void v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep, u32 bus_type) { struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1; u32 v; if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) bus->clock_inv = v; if (!fwnode_property_read_u32(fwnode, "strobe", &v)) bus->strobe = v; if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) bus->data_lane = v; if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) bus->clock_lane = v; if (bus_type == V4L2_FWNODE_BUS_TYPE_CCP2) vep->bus_type = V4L2_MBUS_CCP2; else vep->bus_type = V4L2_MBUS_CSI1; } /** * v4l2_fwnode_endpoint_parse() - parse all fwnode node properties * @fwnode: pointer to the endpoint's fwnode handle * @vep: pointer to the V4L2 fwnode data structure * * All properties are optional. If none are found, we don't set any flags. This * means the port has a static configuration and no properties have to be * specified explicitly. If any properties that identify the bus as parallel * are found and slave-mode isn't set, we set V4L2_MBUS_MASTER. Similarly, if * we recognise the bus as serial CSI-2 and clock-noncontinuous isn't set, we * set the V4L2_MBUS_CSI2_CONTINUOUS_CLOCK flag. The caller should hold a * reference to @fwnode. * * NOTE: This function does not parse properties the size of which is variable * without a low fixed limit. Please use v4l2_fwnode_endpoint_alloc_parse() in * new drivers instead. * * Return: 0 on success or a negative error code on failure. */ int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep) { u32 bus_type = 0; int rval; fwnode_graph_parse_endpoint(fwnode, &vep->base); /* Zero fields from bus_type to until the end */ memset(&vep->bus_type, 0, sizeof(*vep) - offsetof(typeof(*vep), bus_type)); fwnode_property_read_u32(fwnode, "bus-type", &bus_type); switch (bus_type) { case V4L2_FWNODE_BUS_TYPE_GUESS: rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep); if (rval) return rval; /* * Parse the parallel video bus properties only if none * of the MIPI CSI-2 specific properties were found. */ if (vep->bus.mipi_csi2.flags == 0) v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep); return 0; case V4L2_FWNODE_BUS_TYPE_CCP2: case V4L2_FWNODE_BUS_TYPE_CSI1: v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, bus_type); return 0; default: pr_warn("unsupported bus type %u\n", bus_type); return -EINVAL; } } EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse); /* * v4l2_fwnode_endpoint_free() - free the V4L2 fwnode acquired by * v4l2_fwnode_endpoint_alloc_parse() * @vep - the V4L2 fwnode the resources of which are to be released * * It is safe to call this function with NULL argument or on a V4L2 fwnode the * parsing of which failed. */ void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep) { if (IS_ERR_OR_NULL(vep)) return; kfree(vep->link_frequencies); kfree(vep); } EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free); /** * v4l2_fwnode_endpoint_alloc_parse() - parse all fwnode node properties * @fwnode: pointer to the endpoint's fwnode handle * * All properties are optional. If none are found, we don't set any flags. This * means the port has a static configuration and no properties have to be * specified explicitly. If any properties that identify the bus as parallel * are found and slave-mode isn't set, we set V4L2_MBUS_MASTER. Similarly, if * we recognise the bus as serial CSI-2 and clock-noncontinuous isn't set, we * set the V4L2_MBUS_CSI2_CONTINUOUS_CLOCK flag. The caller should hold a * reference to @fwnode. * * v4l2_fwnode_endpoint_alloc_parse() has two important differences to * v4l2_fwnode_endpoint_parse(): * * 1. It also parses variable size data. * * 2. The memory it has allocated to store the variable size data must be freed * using v4l2_fwnode_endpoint_free() when no longer needed. * * Return: Pointer to v4l2_fwnode_endpoint if successful, on an error pointer * on error. */ struct v4l2_fwnode_endpoint *v4l2_fwnode_endpoint_alloc_parse( struct fwnode_handle *fwnode) { struct v4l2_fwnode_endpoint *vep; int rval; vep = kzalloc(sizeof(*vep), GFP_KERNEL); if (!vep) return ERR_PTR(-ENOMEM); rval = v4l2_fwnode_endpoint_parse(fwnode, vep); if (rval < 0) goto out_err; rval = fwnode_property_read_u64_array(fwnode, "link-frequencies", NULL, 0); if (rval > 0) { vep->link_frequencies = kmalloc_array(rval, sizeof(*vep->link_frequencies), GFP_KERNEL); if (!vep->link_frequencies) { rval = -ENOMEM; goto out_err; } vep->nr_of_link_frequencies = rval; rval = fwnode_property_read_u64_array( fwnode, "link-frequencies", vep->link_frequencies, vep->nr_of_link_frequencies); if (rval < 0) goto out_err; } return vep; out_err: v4l2_fwnode_endpoint_free(vep); return ERR_PTR(rval); } EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse); /** * v4l2_fwnode_endpoint_parse_link() - parse a link between two endpoints * @__fwnode: pointer to the endpoint's fwnode at the local end of the link * @link: pointer to the V4L2 fwnode link data structure * * Fill the link structure with the local and remote nodes and port numbers. * The local_node and remote_node fields are set to point to the local and * remote port's parent nodes respectively (the port parent node being the * parent node of the port node if that node isn't a 'ports' node, or the * grand-parent node of the port node otherwise). * * A reference is taken to both the local and remote nodes, the caller must use * v4l2_fwnode_endpoint_put_link() to drop the references when done with the * link. * * Return: 0 on success, or -ENOLINK if the remote endpoint fwnode can't be * found. */ int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode, struct v4l2_fwnode_link *link) { const char *port_prop = is_of_node(__fwnode) ? "reg" : "port"; struct fwnode_handle *fwnode; memset(link, 0, sizeof(*link)); fwnode = fwnode_get_parent(__fwnode); fwnode_property_read_u32(fwnode, port_prop, &link->local_port); fwnode = fwnode_get_next_parent(fwnode); if (is_of_node(fwnode) && of_node_cmp(to_of_node(fwnode)->name, "ports") == 0) fwnode = fwnode_get_next_parent(fwnode); link->local_node = fwnode; fwnode = fwnode_graph_get_remote_endpoint(__fwnode); if (!fwnode) { fwnode_handle_put(fwnode); return -ENOLINK; } fwnode = fwnode_get_parent(fwnode); fwnode_property_read_u32(fwnode, port_prop, &link->remote_port); fwnode = fwnode_get_next_parent(fwnode); if (is_of_node(fwnode) && of_node_cmp(to_of_node(fwnode)->name, "ports") == 0) fwnode = fwnode_get_next_parent(fwnode); link->remote_node = fwnode; return 0; } EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link); /** * v4l2_fwnode_put_link() - drop references to nodes in a link * @link: pointer to the V4L2 fwnode link data structure * * Drop references to the local and remote nodes in the link. This function * must be called on every link parsed with v4l2_fwnode_parse_link(). */ void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link) { fwnode_handle_put(link->local_node); fwnode_handle_put(link->remote_node); } EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link); static int v4l2_async_notifier_realloc(struct v4l2_async_notifier *notifier, unsigned int max_subdevs) { struct v4l2_async_subdev **subdevs; if (max_subdevs <= notifier->max_subdevs) return 0; subdevs = kvmalloc_array( max_subdevs, sizeof(*notifier->subdevs), GFP_KERNEL | __GFP_ZERO); if (!subdevs) return -ENOMEM; if (notifier->subdevs) { memcpy(subdevs, notifier->subdevs, sizeof(*subdevs) * notifier->num_subdevs); kvfree(notifier->subdevs); } notifier->subdevs = subdevs; notifier->max_subdevs = max_subdevs; return 0; } static int v4l2_async_notifier_fwnode_parse_endpoint( struct device *dev, struct v4l2_async_notifier *notifier, struct fwnode_handle *endpoint, unsigned int asd_struct_size, int (*parse_endpoint)(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd)) { struct v4l2_async_subdev *asd; struct v4l2_fwnode_endpoint *vep; int ret = 0; asd = kzalloc(asd_struct_size, GFP_KERNEL); if (!asd) return -ENOMEM; asd->match_type = V4L2_ASYNC_MATCH_FWNODE; asd->match.fwnode.fwnode = fwnode_graph_get_remote_port_parent(endpoint); if (!asd->match.fwnode.fwnode) { dev_warn(dev, "bad remote port parent\n"); ret = -EINVAL; goto out_err; } vep = v4l2_fwnode_endpoint_alloc_parse(endpoint); if (IS_ERR(vep)) { ret = PTR_ERR(vep); dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n", ret); goto out_err; } ret = parse_endpoint ? parse_endpoint(dev, vep, asd) : 0; if (ret == -ENOTCONN) dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep->base.port, vep->base.id); else if (ret < 0) dev_warn(dev, "driver could not parse port@%u/endpoint@%u (%d)\n", vep->base.port, vep->base.id, ret); v4l2_fwnode_endpoint_free(vep); if (ret < 0) goto out_err; notifier->subdevs[notifier->num_subdevs] = asd; notifier->num_subdevs++; return 0; out_err: fwnode_handle_put(asd->match.fwnode.fwnode); kfree(asd); return ret == -ENOTCONN ? 0 : ret; } static int __v4l2_async_notifier_parse_fwnode_endpoints( struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, unsigned int port, bool has_port, int (*parse_endpoint)(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd)) { struct fwnode_handle *fwnode; unsigned int max_subdevs = notifier->max_subdevs; int ret; if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev))) return -EINVAL; for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint( dev_fwnode(dev), fwnode)); ) { struct fwnode_handle *dev_fwnode; bool is_available; dev_fwnode = fwnode_graph_get_port_parent(fwnode); is_available = fwnode_device_is_available(dev_fwnode); fwnode_handle_put(dev_fwnode); if (!is_available) continue; if (has_port) { struct fwnode_endpoint ep; ret = fwnode_graph_parse_endpoint(fwnode, &ep); if (ret) { fwnode_handle_put(fwnode); return ret; } if (ep.port != port) continue; } max_subdevs++; } /* No subdevs to add? Return here. */ if (max_subdevs == notifier->max_subdevs) return 0; ret = v4l2_async_notifier_realloc(notifier, max_subdevs); if (ret) return ret; for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint( dev_fwnode(dev), fwnode)); ) { struct fwnode_handle *dev_fwnode; bool is_available; dev_fwnode = fwnode_graph_get_port_parent(fwnode); is_available = fwnode_device_is_available(dev_fwnode); fwnode_handle_put(dev_fwnode); if (!fwnode_device_is_available(dev_fwnode)) continue; if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) { ret = -EINVAL; break; } if (has_port) { struct fwnode_endpoint ep; ret = fwnode_graph_parse_endpoint(fwnode, &ep); if (ret) break; if (ep.port != port) continue; } ret = v4l2_async_notifier_fwnode_parse_endpoint( dev, notifier, fwnode, asd_struct_size, parse_endpoint); if (ret < 0) break; } fwnode_handle_put(fwnode); return ret; } int v4l2_async_notifier_parse_fwnode_endpoints( struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, int (*parse_endpoint)(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd)) { return __v4l2_async_notifier_parse_fwnode_endpoints( dev, notifier, asd_struct_size, 0, false, parse_endpoint); } EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints); int v4l2_async_notifier_parse_fwnode_endpoints_by_port( struct device *dev, struct v4l2_async_notifier *notifier, size_t asd_struct_size, unsigned int port, int (*parse_endpoint)(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd)) { return __v4l2_async_notifier_parse_fwnode_endpoints( dev, notifier, asd_struct_size, port, true, parse_endpoint); } EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sakari Ailus "); MODULE_AUTHOR("Sylwester Nawrocki "); MODULE_AUTHOR("Guennadi Liakhovetski ");