// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "error.h" #include "journal_io.h" #include "trace.h" #include #include #include #include #include #include #include static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int); /* Ratelimiting/PD controllers */ static void pd_controllers_update(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, pd_controllers_update); struct bch_dev *ca; unsigned i; for_each_member_device(ca, c, i) { struct bch_dev_usage stats = bch2_dev_usage_read(c, ca); u64 free = bucket_to_sector(ca, __dev_buckets_free(ca, stats)) << 9; /* * Bytes of internal fragmentation, which can be * reclaimed by copy GC */ s64 fragmented = (bucket_to_sector(ca, stats.buckets[BCH_DATA_USER] + stats.buckets[BCH_DATA_CACHED]) - (stats.sectors[BCH_DATA_USER] + stats.sectors[BCH_DATA_CACHED])) << 9; fragmented = max(0LL, fragmented); bch2_pd_controller_update(&ca->copygc_pd, free, fragmented, -1); } schedule_delayed_work(&c->pd_controllers_update, c->pd_controllers_update_seconds * HZ); } /* Persistent alloc info: */ static unsigned bch_alloc_val_u64s(const struct bch_alloc *a) { unsigned bytes = offsetof(struct bch_alloc, data); if (a->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) bytes += 2; if (a->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) bytes += 2; return DIV_ROUND_UP(bytes, sizeof(u64)); } const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k) { if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; switch (k.k->type) { case BCH_ALLOC: { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); if (bch_alloc_val_u64s(a.v) != bkey_val_u64s(a.k)) return "incorrect value size"; break; } default: return "invalid type"; } return NULL; } void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { switch (k.k->type) { case BCH_ALLOC: { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); pr_buf(out, "gen %u", a.v->gen); break; } } } static inline unsigned get_alloc_field(const u8 **p, unsigned bytes) { unsigned v; switch (bytes) { case 1: v = **p; break; case 2: v = le16_to_cpup((void *) *p); break; case 4: v = le32_to_cpup((void *) *p); break; default: BUG(); } *p += bytes; return v; } static inline void put_alloc_field(u8 **p, unsigned bytes, unsigned v) { switch (bytes) { case 1: **p = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; default: BUG(); } *p += bytes; } static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k) { struct bch_dev *ca; struct bkey_s_c_alloc a; struct bucket_mark new; struct bucket *g; const u8 *d; if (k.k->type != BCH_ALLOC) return; a = bkey_s_c_to_alloc(k); ca = bch_dev_bkey_exists(c, a.k->p.inode); if (a.k->p.offset >= ca->mi.nbuckets) return; percpu_down_read(&c->usage_lock); g = bucket(ca, a.k->p.offset); bucket_cmpxchg(g, new, ({ new.gen = a.v->gen; new.gen_valid = 1; })); d = a.v->data; if (a.v->fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) g->io_time[READ] = get_alloc_field(&d, 2); if (a.v->fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) g->io_time[WRITE] = get_alloc_field(&d, 2); percpu_up_read(&c->usage_lock); } int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list) { struct journal_replay *r; struct btree_iter iter; struct bkey_s_c k; struct bch_dev *ca; unsigned i; int ret; for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) { bch2_alloc_read_key(c, k); bch2_btree_iter_cond_resched(&iter); } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; list_for_each_entry(r, journal_replay_list, list) { struct bkey_i *k, *n; struct jset_entry *entry; for_each_jset_key(k, n, entry, &r->j) if (entry->btree_id == BTREE_ID_ALLOC) bch2_alloc_read_key(c, bkey_i_to_s_c(k)); } mutex_lock(&c->bucket_clock[READ].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, READ); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[READ].lock); mutex_lock(&c->bucket_clock[WRITE].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, WRITE); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[WRITE].lock); return 0; } static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca, size_t b, struct btree_iter *iter, u64 *journal_seq, unsigned flags) { struct bucket_mark m; __BKEY_PADDED(k, DIV_ROUND_UP(sizeof(struct bch_alloc), 8)) alloc_key; struct bucket *g; struct bkey_i_alloc *a; u8 *d; percpu_down_read(&c->usage_lock); g = bucket(ca, b); m = READ_ONCE(g->mark); a = bkey_alloc_init(&alloc_key.k); a->k.p = POS(ca->dev_idx, b); a->v.fields = 0; a->v.gen = m.gen; set_bkey_val_u64s(&a->k, bch_alloc_val_u64s(&a->v)); d = a->v.data; if (a->v.fields & (1 << BCH_ALLOC_FIELD_READ_TIME)) put_alloc_field(&d, 2, g->io_time[READ]); if (a->v.fields & (1 << BCH_ALLOC_FIELD_WRITE_TIME)) put_alloc_field(&d, 2, g->io_time[WRITE]); percpu_up_read(&c->usage_lock); bch2_btree_iter_cond_resched(iter); bch2_btree_iter_set_pos(iter, a->k.p); return bch2_btree_insert_at(c, NULL, journal_seq, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_USE_ALLOC_RESERVE| flags, BTREE_INSERT_ENTRY(iter, &a->k_i)); } int bch2_alloc_replay_key(struct bch_fs *c, struct bpos pos) { struct bch_dev *ca; struct btree_iter iter; int ret; if (pos.inode >= c->sb.nr_devices || !c->devs[pos.inode]) return 0; ca = bch_dev_bkey_exists(c, pos.inode); if (pos.offset >= ca->mi.nbuckets) return 0; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ret = __bch2_alloc_write_key(c, ca, pos.offset, &iter, NULL, 0); bch2_btree_iter_unlock(&iter); return ret; } int bch2_alloc_write(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret = 0; for_each_rw_member(ca, c, i) { struct btree_iter iter; unsigned long bucket; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); down_read(&ca->bucket_lock); for_each_set_bit(bucket, ca->buckets_dirty, ca->mi.nbuckets) { ret = __bch2_alloc_write_key(c, ca, bucket, &iter, NULL, 0); if (ret) break; clear_bit(bucket, ca->buckets_dirty); } up_read(&ca->bucket_lock); bch2_btree_iter_unlock(&iter); if (ret) { percpu_ref_put(&ca->io_ref); break; } } return ret; } /* Bucket IO clocks: */ static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets = bucket_array(ca); struct bucket *g; u16 max_last_io = 0; unsigned i; lockdep_assert_held(&c->bucket_clock[rw].lock); /* Recalculate max_last_io for this device: */ for_each_bucket(g, buckets) max_last_io = max(max_last_io, bucket_last_io(c, g, rw)); ca->max_last_bucket_io[rw] = max_last_io; /* Recalculate global max_last_io: */ max_last_io = 0; for_each_member_device(ca, c, i) max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]); clock->max_last_io = max_last_io; } static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets; struct bch_dev *ca; struct bucket *g; unsigned i; trace_rescale_prios(c); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) g->io_time[rw] = clock->hand - bucket_last_io(c, g, rw) / 2; bch2_recalc_oldest_io(c, ca, rw); up_read(&ca->bucket_lock); } } static inline u64 bucket_clock_freq(u64 capacity) { return max(capacity >> 10, 2028ULL); } static void bch2_inc_clock_hand(struct io_timer *timer) { struct bucket_clock *clock = container_of(timer, struct bucket_clock, rescale); struct bch_fs *c = container_of(clock, struct bch_fs, bucket_clock[clock->rw]); struct bch_dev *ca; u64 capacity; unsigned i; mutex_lock(&clock->lock); /* if clock cannot be advanced more, rescale prio */ if (clock->max_last_io >= U16_MAX - 2) bch2_rescale_bucket_io_times(c, clock->rw); BUG_ON(clock->max_last_io >= U16_MAX - 2); for_each_member_device(ca, c, i) ca->max_last_bucket_io[clock->rw]++; clock->max_last_io++; clock->hand++; mutex_unlock(&clock->lock); capacity = READ_ONCE(c->capacity); if (!capacity) return; /* * we only increment when 0.1% of the filesystem capacity has been read * or written too, this determines if it's time * * XXX: we shouldn't really be going off of the capacity of devices in * RW mode (that will be 0 when we're RO, yet we can still service * reads) */ timer->expire += bucket_clock_freq(capacity); bch2_io_timer_add(&c->io_clock[clock->rw], timer); } static void bch2_bucket_clock_init(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; clock->hand = 1; clock->rw = rw; clock->rescale.fn = bch2_inc_clock_hand; clock->rescale.expire = bucket_clock_freq(c->capacity); mutex_init(&clock->lock); } /* Background allocator thread: */ /* * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens * (marking them as invalidated on disk), then optionally issues discard * commands to the newly free buckets, then puts them on the various freelists. */ #define BUCKET_GC_GEN_MAX 96U /** * wait_buckets_available - wait on reclaimable buckets * * If there aren't enough available buckets to fill up free_inc, wait until * there are. */ static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca) { unsigned long gc_count = c->gc_count; int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { ret = 1; break; } if (gc_count != c->gc_count) ca->inc_gen_really_needs_gc = 0; if ((ssize_t) (dev_buckets_available(c, ca) - ca->inc_gen_really_needs_gc) >= (ssize_t) fifo_free(&ca->free_inc)) break; up_read(&c->gc_lock); schedule(); try_to_freeze(); down_read(&c->gc_lock); } __set_current_state(TASK_RUNNING); return ret; } static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t bucket, struct bucket_mark mark) { u8 gc_gen; if (!is_available_bucket(mark)) return false; gc_gen = bucket_gc_gen(ca, bucket); if (gc_gen >= BUCKET_GC_GEN_MAX / 2) ca->inc_gen_needs_gc++; if (gc_gen >= BUCKET_GC_GEN_MAX) ca->inc_gen_really_needs_gc++; return gc_gen < BUCKET_GC_GEN_MAX; } /* * Determines what order we're going to reuse buckets, smallest bucket_key() * first. * * * - We take into account the read prio of the bucket, which gives us an * indication of how hot the data is -- we scale the prio so that the prio * farthest from the clock is worth 1/8th of the closest. * * - The number of sectors of cached data in the bucket, which gives us an * indication of the cost in cache misses this eviction will cause. * * - If hotness * sectors used compares equal, we pick the bucket with the * smallest bucket_gc_gen() - since incrementing the same bucket's generation * number repeatedly forces us to run mark and sweep gc to avoid generation * number wraparound. */ static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark m) { unsigned last_io = bucket_last_io(c, bucket(ca, b), READ); unsigned max_last_io = ca->max_last_bucket_io[READ]; /* * Time since last read, scaled to [0, 8) where larger value indicates * more recently read data: */ unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io; /* How much we want to keep the data in this bucket: */ unsigned long data_wantness = (hotness + 1) * bucket_sectors_used(m); unsigned long needs_journal_commit = bucket_needs_journal_commit(m, c->journal.last_seq_ondisk); return (data_wantness << 9) | (needs_journal_commit << 8) | (bucket_gc_gen(ca, b) / 16); } static inline int bucket_alloc_cmp(alloc_heap *h, struct alloc_heap_entry l, struct alloc_heap_entry r) { return (l.key > r.key) - (l.key < r.key) ?: (l.nr < r.nr) - (l.nr > r.nr) ?: (l.bucket > r.bucket) - (l.bucket < r.bucket); } static inline int bucket_idx_cmp(const void *_l, const void *_r) { const struct alloc_heap_entry *l = _l, *r = _r; return (l->bucket > r->bucket) - (l->bucket < r->bucket); } static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets; struct alloc_heap_entry e = { 0 }; size_t b, i, nr = 0; ca->alloc_heap.used = 0; mutex_lock(&c->bucket_clock[READ].lock); down_read(&ca->bucket_lock); buckets = bucket_array(ca); bch2_recalc_oldest_io(c, ca, READ); /* * Find buckets with lowest read priority, by building a maxheap sorted * by read priority and repeatedly replacing the maximum element until * all buckets have been visited. */ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { struct bucket_mark m = READ_ONCE(buckets->b[b].mark); unsigned long key = bucket_sort_key(c, ca, b, m); if (!bch2_can_invalidate_bucket(ca, b, m)) continue; if (e.nr && e.bucket + e.nr == b && e.key == key) { e.nr++; } else { if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); e = (struct alloc_heap_entry) { .bucket = b, .nr = 1, .key = key, }; } cond_resched(); } if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) { nr -= ca->alloc_heap.data[0].nr; heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); } up_read(&ca->bucket_lock); mutex_unlock(&c->bucket_clock[READ].lock); } static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t b, start; if (ca->fifo_last_bucket < ca->mi.first_bucket || ca->fifo_last_bucket >= ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; start = ca->fifo_last_bucket; do { ca->fifo_last_bucket++; if (ca->fifo_last_bucket == ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; b = ca->fifo_last_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } while (ca->fifo_last_bucket != start); } static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t checked, i; for (checked = 0; checked < ca->mi.nbuckets / 2; checked++) { size_t b = bch2_rand_range(ca->mi.nbuckets - ca->mi.first_bucket) + ca->mi.first_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } sort(ca->alloc_heap.data, ca->alloc_heap.used, sizeof(ca->alloc_heap.data[0]), bucket_idx_cmp, NULL); /* remove duplicates: */ for (i = 0; i + 1 < ca->alloc_heap.used; i++) if (ca->alloc_heap.data[i].bucket == ca->alloc_heap.data[i + 1].bucket) ca->alloc_heap.data[i].nr = 0; } static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) { size_t i, nr = 0; ca->inc_gen_needs_gc = 0; switch (ca->mi.replacement) { case CACHE_REPLACEMENT_LRU: find_reclaimable_buckets_lru(c, ca); break; case CACHE_REPLACEMENT_FIFO: find_reclaimable_buckets_fifo(c, ca); break; case CACHE_REPLACEMENT_RANDOM: find_reclaimable_buckets_random(c, ca); break; } heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; return nr; } static inline long next_alloc_bucket(struct bch_dev *ca) { struct alloc_heap_entry e, *top = ca->alloc_heap.data; while (ca->alloc_heap.used) { if (top->nr) { size_t b = top->bucket; top->bucket++; top->nr--; return b; } heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); } return -1; } static bool bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket, u64 *flush_seq) { struct bucket_mark m; percpu_down_read(&c->usage_lock); spin_lock(&c->freelist_lock); bch2_invalidate_bucket(c, ca, bucket, &m); verify_not_on_freelist(c, ca, bucket); BUG_ON(!fifo_push(&ca->free_inc, bucket)); spin_unlock(&c->freelist_lock); bucket_io_clock_reset(c, ca, bucket, READ); bucket_io_clock_reset(c, ca, bucket, WRITE); percpu_up_read(&c->usage_lock); if (m.journal_seq_valid) { u64 journal_seq = atomic64_read(&c->journal.seq); u64 bucket_seq = journal_seq; bucket_seq &= ~((u64) U16_MAX); bucket_seq |= m.journal_seq; if (bucket_seq > journal_seq) bucket_seq -= 1 << 16; *flush_seq = max(*flush_seq, bucket_seq); } return m.cached_sectors != 0; } /* * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc: */ static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca) { struct btree_iter iter; u64 journal_seq = 0; int ret = 0; long b; bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); /* Only use nowait if we've already invalidated at least one bucket: */ while (!ret && !fifo_full(&ca->free_inc) && (b = next_alloc_bucket(ca)) >= 0) { bool must_flush = bch2_invalidate_one_bucket(c, ca, b, &journal_seq); ret = __bch2_alloc_write_key(c, ca, b, &iter, must_flush ? &journal_seq : NULL, !fifo_empty(&ca->free_inc) ? BTREE_INSERT_NOWAIT : 0); } bch2_btree_iter_unlock(&iter); /* If we used NOWAIT, don't return the error: */ if (!fifo_empty(&ca->free_inc)) ret = 0; if (ret) { bch_err(ca, "error invalidating buckets: %i", ret); return ret; } if (journal_seq) ret = bch2_journal_flush_seq(&c->journal, journal_seq); if (ret) { bch_err(ca, "journal error: %i", ret); return ret; } return 0; } static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { unsigned i; int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) if (fifo_push(&ca->free[i], bucket)) { fifo_pop(&ca->free_inc, bucket); closure_wake_up(&c->freelist_wait); spin_unlock(&c->freelist_lock); goto out; } spin_unlock(&c->freelist_lock); if ((current->flags & PF_KTHREAD) && kthread_should_stop()) { ret = 1; break; } schedule(); try_to_freeze(); } out: __set_current_state(TASK_RUNNING); return ret; } /* * Pulls buckets off free_inc, discards them (if enabled), then adds them to * freelists, waiting until there's room if necessary: */ static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca) { while (!fifo_empty(&ca->free_inc)) { size_t bucket = fifo_peek(&ca->free_inc); if (ca->mi.discard && bdev_max_discard_sectors(ca->disk_sb.bdev)) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bucket), ca->mi.bucket_size, GFP_NOIO); if (push_invalidated_bucket(c, ca, bucket)) return 1; } return 0; } /** * bch_allocator_thread - move buckets from free_inc to reserves * * The free_inc FIFO is populated by find_reclaimable_buckets(), and * the reserves are depleted by bucket allocation. When we run out * of free_inc, try to invalidate some buckets and write out * prios and gens. */ static int bch2_allocator_thread(void *arg) { struct bch_dev *ca = arg; struct bch_fs *c = ca->fs; size_t nr; int ret; set_freezable(); while (1) { cond_resched(); pr_debug("discarding %zu invalidated buckets", fifo_used(&ca->free_inc)); ret = discard_invalidated_buckets(c, ca); if (ret) goto stop; down_read(&c->gc_lock); ret = bch2_invalidate_buckets(c, ca); if (ret) { up_read(&c->gc_lock); goto stop; } if (!fifo_empty(&ca->free_inc)) { up_read(&c->gc_lock); continue; } pr_debug("free_inc now empty"); do { if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) { up_read(&c->gc_lock); bch_err(ca, "gc failure"); goto stop; } /* * Find some buckets that we can invalidate, either * they're completely unused, or only contain clean data * that's been written back to the backing device or * another cache tier */ pr_debug("scanning for reclaimable buckets"); nr = find_reclaimable_buckets(c, ca); pr_debug("found %zu buckets", nr); trace_alloc_batch(ca, nr, ca->alloc_heap.size); if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) || ca->inc_gen_really_needs_gc) && c->gc_thread) { atomic_inc(&c->kick_gc); wake_up_process(c->gc_thread); } /* * If we found any buckets, we have to invalidate them * before we scan for more - but if we didn't find very * many we may want to wait on more buckets being * available so we don't spin: */ if (!nr || (nr < ALLOC_SCAN_BATCH(ca) && !fifo_full(&ca->free[RESERVE_MOVINGGC]))) { ca->allocator_blocked = true; closure_wake_up(&c->freelist_wait); ret = wait_buckets_available(c, ca); if (ret) { up_read(&c->gc_lock); goto stop; } } } while (!nr); ca->allocator_blocked = false; up_read(&c->gc_lock); pr_debug("%zu buckets to invalidate", nr); /* * alloc_heap is now full of newly-invalidated buckets: next, * write out the new bucket gens: */ } stop: pr_debug("alloc thread stopping (ret %i)", ret); return 0; } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_dev *ca; u64 capacity = 0, reserved_sectors = 0, gc_reserve; unsigned bucket_size_max = 0; unsigned long ra_pages = 0; unsigned i, j; lockdep_assert_held(&c->state_lock); for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi; ra_pages += bdi->ra_pages; } bch2_set_ra_pages(c, ra_pages); for_each_rw_member(ca, c, i) { u64 dev_reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ for (j = 0; j < RESERVE_NONE; j++) dev_reserve += ca->free[j].size; dev_reserve += 1; /* btree write point */ dev_reserve += 1; /* copygc write point */ dev_reserve += 1; /* rebalance write point */ dev_reserve *= ca->mi.bucket_size; ca->copygc_threshold = dev_reserve; capacity += bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket); reserved_sectors += dev_reserve * 2; bucket_size_max = max_t(unsigned, bucket_size_max, ca->mi.bucket_size); } gc_reserve = c->opts.gc_reserve_bytes ? c->opts.gc_reserve_bytes >> 9 : div64_u64(capacity * c->opts.gc_reserve_percent, 100); reserved_sectors = max(gc_reserve, reserved_sectors); reserved_sectors = min(reserved_sectors, capacity); c->capacity = capacity - reserved_sectors; c->bucket_size_max = bucket_size_max; if (c->capacity) { bch2_io_timer_add(&c->io_clock[READ], &c->bucket_clock[READ].rescale); bch2_io_timer_add(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); } else { bch2_io_timer_del(&c->io_clock[READ], &c->bucket_clock[READ].rescale); bch2_io_timer_del(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); } /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct open_bucket *ob; bool ret = false; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list && ob->ptr.dev == ca->dev_idx) ret = true; spin_unlock(&ob->lock); } return ret; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { unsigned i; BUG_ON(ca->alloc_thread); /* First, remove device from allocation groups: */ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) clear_bit(ca->dev_idx, c->rw_devs[i].d); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_writepoint_stop(c, ca, &c->write_points[i]); bch2_writepoint_stop(c, ca, &ca->copygc_write_point); bch2_writepoint_stop(c, ca, &c->rebalance_write_point); bch2_writepoint_stop(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_buckets_put(c, &a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ closure_wait_event(&c->open_buckets_wait, !bch2_dev_has_open_write_point(c, ca)); } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { unsigned i; for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) if (ca->mi.data_allowed & (1 << i)) set_bit(ca->dev_idx, c->rw_devs[i].d); } /* stop allocator thread: */ void bch2_dev_allocator_stop(struct bch_dev *ca) { struct task_struct *p; p = rcu_dereference_protected(ca->alloc_thread, 1); ca->alloc_thread = NULL; /* * We need an rcu barrier between setting ca->alloc_thread = NULL and * the thread shutting down to avoid bch2_wake_allocator() racing: * * XXX: it would be better to have the rcu barrier be asynchronous * instead of blocking us here */ synchronize_rcu(); if (p) { kthread_stop(p); put_task_struct(p); } } /* start allocator thread: */ int bch2_dev_allocator_start(struct bch_dev *ca) { struct task_struct *p; /* * allocator thread already started? */ if (ca->alloc_thread) return 0; p = kthread_create(bch2_allocator_thread, ca, "bch_alloc[%s]", ca->name); if (IS_ERR(p)) return PTR_ERR(p); get_task_struct(p); rcu_assign_pointer(ca->alloc_thread, p); wake_up_process(p); return 0; } static void flush_held_btree_writes(struct bch_fs *c) { struct bucket_table *tbl; struct rhash_head *pos; struct btree *b; bool flush_updates; size_t i, nr_pending_updates; clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags); again: pr_debug("flushing dirty btree nodes"); cond_resched(); flush_updates = false; nr_pending_updates = bch2_btree_interior_updates_nr_pending(c); rcu_read_lock(); for_each_cached_btree(b, c, tbl, i, pos) if (btree_node_dirty(b) && (!b->written || b->level)) { if (btree_node_may_write(b)) { rcu_read_unlock(); btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write(c, b, SIX_LOCK_read); six_unlock_read(&b->lock); goto again; } else { flush_updates = true; } } rcu_read_unlock(); if (c->btree_roots_dirty) bch2_journal_meta(&c->journal); /* * This is ugly, but it's needed to flush btree node writes * without spinning... */ if (flush_updates) { closure_wait_event(&c->btree_interior_update_wait, bch2_btree_interior_updates_nr_pending(c) < nr_pending_updates); goto again; } } static void allocator_start_issue_discards(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_iter; size_t bu; for_each_rw_member(ca, c, dev_iter) while (fifo_pop(&ca->free_inc, bu)) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bu), ca->mi.bucket_size, GFP_NOIO); } static int __bch2_fs_allocator_start(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_iter; u64 journal_seq = 0; long bu; bool invalidating_data = false; int ret = 0; if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) return -1; if (test_alloc_startup(c)) { invalidating_data = true; goto not_enough; } /* Scan for buckets that are already invalidated: */ for_each_rw_member(ca, c, dev_iter) { struct btree_iter iter; struct bucket_mark m; struct bkey_s_c k; for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), 0, k) { if (k.k->type != BCH_ALLOC) continue; bu = k.k->p.offset; m = READ_ONCE(bucket(ca, bu)->mark); if (!is_available_bucket(m) || m.cached_sectors) continue; percpu_down_read(&c->usage_lock); bch2_mark_alloc_bucket(c, ca, bu, true, gc_pos_alloc(c, NULL), BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE| BCH_BUCKET_MARK_GC_LOCK_HELD); percpu_up_read(&c->usage_lock); fifo_push(&ca->free_inc, bu); if (fifo_full(&ca->free_inc)) break; } bch2_btree_iter_unlock(&iter); } /* did we find enough buckets? */ for_each_rw_member(ca, c, dev_iter) if (fifo_used(&ca->free_inc) < ca->free[RESERVE_BTREE].size) { percpu_ref_put(&ca->io_ref); goto not_enough; } return 0; not_enough: pr_debug("did not find enough empty buckets; issuing discards"); /* clear out free_inc, we'll be using it again below: */ for_each_rw_member(ca, c, dev_iter) discard_invalidated_buckets(c, ca); pr_debug("scanning for reclaimable buckets"); for_each_rw_member(ca, c, dev_iter) { find_reclaimable_buckets(c, ca); while (!fifo_full(&ca->free[RESERVE_BTREE]) && (bu = next_alloc_bucket(ca)) >= 0) { invalidating_data |= bch2_invalidate_one_bucket(c, ca, bu, &journal_seq); fifo_push(&ca->free[RESERVE_BTREE], bu); set_bit(bu, ca->buckets_dirty); } } pr_debug("done scanning for reclaimable buckets"); /* * We're moving buckets to freelists _before_ they've been marked as * invalidated on disk - we have to so that we can allocate new btree * nodes to mark them as invalidated on disk. * * However, we can't _write_ to any of these buckets yet - they might * have cached data in them, which is live until they're marked as * invalidated on disk: */ if (invalidating_data) { pr_debug("invalidating existing data"); set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags); } else { pr_debug("issuing discards"); allocator_start_issue_discards(c); } /* * XXX: it's possible for this to deadlock waiting on journal reclaim, * since we're holding btree writes. What then? */ ret = bch2_alloc_write(c); if (ret) return ret; if (invalidating_data) { pr_debug("flushing journal"); ret = bch2_journal_flush_seq(&c->journal, journal_seq); if (ret) return ret; pr_debug("issuing discards"); allocator_start_issue_discards(c); } set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags); /* now flush dirty btree nodes: */ if (invalidating_data) flush_held_btree_writes(c); return 0; } int bch2_fs_allocator_start(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret; down_read(&c->gc_lock); ret = __bch2_fs_allocator_start(c); up_read(&c->gc_lock); if (ret) return ret; for_each_rw_member(ca, c, i) { ret = bch2_dev_allocator_start(ca); if (ret) { percpu_ref_put(&ca->io_ref); return ret; } } return bch2_alloc_write(c); } void bch2_fs_allocator_background_init(struct bch_fs *c) { spin_lock_init(&c->freelist_lock); bch2_bucket_clock_init(c, READ); bch2_bucket_clock_init(c, WRITE); c->pd_controllers_update_seconds = 5; INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); }