// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bkey_methods.h" #include "bkey_buf.h" #include "btree_cache.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update.h" #include "debug.h" #include "extents.h" #include "journal.h" #include "trace.h" #include static inline bool is_btree_node(struct btree_iter *iter, unsigned l) { return l < BTREE_MAX_DEPTH && (unsigned long) iter->l[l].b >= 128; } static inline struct bpos btree_iter_search_key(struct btree_iter *iter) { struct bpos pos = iter->pos; if ((iter->flags & BTREE_ITER_IS_EXTENTS) && bkey_cmp(pos, POS_MAX)) pos = bkey_successor(pos); return pos; } static inline bool btree_iter_pos_before_node(struct btree_iter *iter, struct btree *b) { return bkey_cmp(iter->real_pos, b->data->min_key) < 0; } static inline bool btree_iter_pos_after_node(struct btree_iter *iter, struct btree *b) { return bkey_cmp(b->key.k.p, iter->real_pos) < 0; } static inline bool btree_iter_pos_in_node(struct btree_iter *iter, struct btree *b) { return iter->btree_id == b->c.btree_id && !btree_iter_pos_before_node(iter, b) && !btree_iter_pos_after_node(iter, b); } /* Btree node locking: */ void bch2_btree_node_unlock_write(struct btree *b, struct btree_iter *iter) { bch2_btree_node_unlock_write_inlined(b, iter); } void __bch2_btree_node_lock_write(struct btree *b, struct btree_iter *iter) { struct btree_iter *linked; unsigned readers = 0; EBUG_ON(!btree_node_intent_locked(iter, b->c.level)); trans_for_each_iter(iter->trans, linked) if (linked->l[b->c.level].b == b && btree_node_read_locked(linked, b->c.level)) readers++; /* * Must drop our read locks before calling six_lock_write() - * six_unlock() won't do wakeups until the reader count * goes to 0, and it's safe because we have the node intent * locked: */ atomic64_sub(__SIX_VAL(read_lock, readers), &b->c.lock.state.counter); btree_node_lock_type(iter->trans->c, b, SIX_LOCK_write); atomic64_add(__SIX_VAL(read_lock, readers), &b->c.lock.state.counter); } bool __bch2_btree_node_relock(struct btree_iter *iter, unsigned level) { struct btree *b = btree_iter_node(iter, level); int want = __btree_lock_want(iter, level); if (!is_btree_node(iter, level)) return false; if (race_fault()) return false; if (six_relock_type(&b->c.lock, want, iter->l[level].lock_seq) || (btree_node_lock_seq_matches(iter, b, level) && btree_node_lock_increment(iter->trans, b, level, want))) { mark_btree_node_locked(iter, level, want); return true; } else { return false; } } static bool bch2_btree_node_upgrade(struct btree_iter *iter, unsigned level) { struct btree *b = iter->l[level].b; EBUG_ON(btree_lock_want(iter, level) != BTREE_NODE_INTENT_LOCKED); if (!is_btree_node(iter, level)) return false; if (btree_node_intent_locked(iter, level)) return true; if (race_fault()) return false; if (btree_node_locked(iter, level) ? six_lock_tryupgrade(&b->c.lock) : six_relock_type(&b->c.lock, SIX_LOCK_intent, iter->l[level].lock_seq)) goto success; if (btree_node_lock_seq_matches(iter, b, level) && btree_node_lock_increment(iter->trans, b, level, BTREE_NODE_INTENT_LOCKED)) { btree_node_unlock(iter, level); goto success; } return false; success: mark_btree_node_intent_locked(iter, level); return true; } static inline bool btree_iter_get_locks(struct btree_iter *iter, bool upgrade, bool trace) { unsigned l = iter->level; int fail_idx = -1; do { if (!btree_iter_node(iter, l)) break; if (!(upgrade ? bch2_btree_node_upgrade(iter, l) : bch2_btree_node_relock(iter, l))) { if (trace) (upgrade ? trace_node_upgrade_fail : trace_node_relock_fail)(l, iter->l[l].lock_seq, is_btree_node(iter, l) ? 0 : (unsigned long) iter->l[l].b, is_btree_node(iter, l) ? iter->l[l].b->c.lock.state.seq : 0); fail_idx = l; btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); } l++; } while (l < iter->locks_want); /* * When we fail to get a lock, we have to ensure that any child nodes * can't be relocked so bch2_btree_iter_traverse has to walk back up to * the node that we failed to relock: */ while (fail_idx >= 0) { btree_node_unlock(iter, fail_idx); iter->l[fail_idx].b = BTREE_ITER_NO_NODE_GET_LOCKS; --fail_idx; } if (iter->uptodate == BTREE_ITER_NEED_RELOCK) iter->uptodate = BTREE_ITER_NEED_PEEK; bch2_btree_trans_verify_locks(iter->trans); return iter->uptodate < BTREE_ITER_NEED_RELOCK; } static struct bpos btree_node_pos(struct btree_bkey_cached_common *_b, enum btree_iter_type type) { return type != BTREE_ITER_CACHED ? container_of(_b, struct btree, c)->key.k.p : container_of(_b, struct bkey_cached, c)->key.pos; } /* Slowpath: */ bool __bch2_btree_node_lock(struct btree *b, struct bpos pos, unsigned level, struct btree_iter *iter, enum six_lock_type type, six_lock_should_sleep_fn should_sleep_fn, void *p, unsigned long ip) { struct btree_trans *trans = iter->trans; struct btree_iter *linked, *deadlock_iter = NULL; u64 start_time = local_clock(); unsigned reason = 9; /* Check if it's safe to block: */ trans_for_each_iter(trans, linked) { if (!linked->nodes_locked) continue; /* * Can't block taking an intent lock if we have _any_ nodes read * locked: * * - Our read lock blocks another thread with an intent lock on * the same node from getting a write lock, and thus from * dropping its intent lock * * - And the other thread may have multiple nodes intent locked: * both the node we want to intent lock, and the node we * already have read locked - deadlock: */ if (type == SIX_LOCK_intent && linked->nodes_locked != linked->nodes_intent_locked) { if (!(trans->nounlock)) { linked->locks_want = max_t(unsigned, linked->locks_want, __fls(linked->nodes_locked) + 1); if (!btree_iter_get_locks(linked, true, false)) { deadlock_iter = linked; reason = 1; } } else { deadlock_iter = linked; reason = 2; } } if (linked->btree_id != iter->btree_id) { if (linked->btree_id > iter->btree_id) { deadlock_iter = linked; reason = 3; } continue; } /* * Within the same btree, cached iterators come before non * cached iterators: */ if (btree_iter_is_cached(linked) != btree_iter_is_cached(iter)) { if (btree_iter_is_cached(iter)) { deadlock_iter = linked; reason = 4; } continue; } /* * Interior nodes must be locked before their descendants: if * another iterator has possible descendants locked of the node * we're about to lock, it must have the ancestors locked too: */ if (level > __fls(linked->nodes_locked)) { if (!(trans->nounlock)) { linked->locks_want = max(level + 1, max_t(unsigned, linked->locks_want, iter->locks_want)); if (!btree_iter_get_locks(linked, true, false)) { deadlock_iter = linked; reason = 5; } } else { deadlock_iter = linked; reason = 6; } } /* Must lock btree nodes in key order: */ if (btree_node_locked(linked, level) && bkey_cmp(pos, btree_node_pos((void *) linked->l[level].b, btree_iter_type(linked))) <= 0) { deadlock_iter = linked; reason = 7; } /* * Recheck if this is a node we already have locked - since one * of the get_locks() calls might've successfully * upgraded/relocked it: */ if (linked->l[level].b == b && btree_node_locked_type(linked, level) >= type) { six_lock_increment(&b->c.lock, type); return true; } } if (unlikely(deadlock_iter)) { trace_trans_restart_would_deadlock(iter->trans->ip, ip, reason, deadlock_iter->btree_id, btree_iter_type(deadlock_iter), iter->btree_id, btree_iter_type(iter)); return false; } if (six_trylock_type(&b->c.lock, type)) return true; if (six_lock_type(&b->c.lock, type, should_sleep_fn, p)) return false; bch2_time_stats_update(&trans->c->times[lock_to_time_stat(type)], start_time); return true; } /* Btree iterator locking: */ #ifdef CONFIG_BCACHEFS_DEBUG static void bch2_btree_iter_verify_locks(struct btree_iter *iter) { unsigned l; if (!(iter->trans->iters_linked & (1ULL << iter->idx))) { BUG_ON(iter->nodes_locked); return; } for (l = 0; is_btree_node(iter, l); l++) { if (iter->uptodate >= BTREE_ITER_NEED_RELOCK && !btree_node_locked(iter, l)) continue; BUG_ON(btree_lock_want(iter, l) != btree_node_locked_type(iter, l)); } } void bch2_btree_trans_verify_locks(struct btree_trans *trans) { struct btree_iter *iter; trans_for_each_iter(trans, iter) bch2_btree_iter_verify_locks(iter); } #else static inline void bch2_btree_iter_verify_locks(struct btree_iter *iter) {} #endif __flatten bool bch2_btree_iter_relock(struct btree_iter *iter, bool trace) { return btree_iter_get_locks(iter, false, trace); } bool __bch2_btree_iter_upgrade(struct btree_iter *iter, unsigned new_locks_want) { struct btree_iter *linked; EBUG_ON(iter->locks_want >= new_locks_want); iter->locks_want = new_locks_want; if (btree_iter_get_locks(iter, true, true)) return true; /* * Ancestor nodes must be locked before child nodes, so set locks_want * on iterators that might lock ancestors before us to avoid getting * -EINTR later: */ trans_for_each_iter(iter->trans, linked) if (linked != iter && linked->btree_id == iter->btree_id && linked->locks_want < new_locks_want) { linked->locks_want = new_locks_want; btree_iter_get_locks(linked, true, false); } return false; } bool __bch2_btree_iter_upgrade_nounlock(struct btree_iter *iter, unsigned new_locks_want) { unsigned l = iter->level; EBUG_ON(iter->locks_want >= new_locks_want); iter->locks_want = new_locks_want; do { if (!btree_iter_node(iter, l)) break; if (!bch2_btree_node_upgrade(iter, l)) { iter->locks_want = l; return false; } l++; } while (l < iter->locks_want); return true; } void __bch2_btree_iter_downgrade(struct btree_iter *iter, unsigned downgrade_to) { unsigned l, new_locks_want = downgrade_to ?: (iter->flags & BTREE_ITER_INTENT ? 1 : 0); if (iter->locks_want < downgrade_to) { iter->locks_want = new_locks_want; while (iter->nodes_locked && (l = __fls(iter->nodes_locked)) >= iter->locks_want) { if (l > iter->level) { btree_node_unlock(iter, l); } else { if (btree_node_intent_locked(iter, l)) { six_lock_downgrade(&iter->l[l].b->c.lock); iter->nodes_intent_locked ^= 1 << l; } break; } } } bch2_btree_trans_verify_locks(iter->trans); } void bch2_trans_downgrade(struct btree_trans *trans) { struct btree_iter *iter; trans_for_each_iter(trans, iter) bch2_btree_iter_downgrade(iter); } /* Btree transaction locking: */ bool bch2_trans_relock(struct btree_trans *trans) { struct btree_iter *iter; bool ret = true; trans_for_each_iter(trans, iter) if (iter->uptodate == BTREE_ITER_NEED_RELOCK) ret &= bch2_btree_iter_relock(iter, true); return ret; } void bch2_trans_unlock(struct btree_trans *trans) { struct btree_iter *iter; trans_for_each_iter(trans, iter) __bch2_btree_iter_unlock(iter); } /* Btree iterator: */ #ifdef CONFIG_BCACHEFS_DEBUG static void bch2_btree_iter_verify_cached(struct btree_iter *iter) { struct bkey_cached *ck; bool locked = btree_node_locked(iter, 0); if (!bch2_btree_node_relock(iter, 0)) return; ck = (void *) iter->l[0].b; BUG_ON(ck->key.btree_id != iter->btree_id || bkey_cmp(ck->key.pos, iter->pos)); if (!locked) btree_node_unlock(iter, 0); } static void bch2_btree_iter_verify_level(struct btree_iter *iter, unsigned level) { struct btree_iter_level *l = &iter->l[level]; struct btree_node_iter tmp = l->iter; bool locked = btree_node_locked(iter, level); struct bkey_packed *p, *k; char buf1[100], buf2[100]; const char *msg; if (!bch2_debug_check_iterators) return; if (btree_iter_type(iter) == BTREE_ITER_CACHED) { if (!level) bch2_btree_iter_verify_cached(iter); return; } BUG_ON(iter->level < iter->min_depth); if (!btree_iter_node(iter, level)) return; if (!bch2_btree_node_relock(iter, level)) return; BUG_ON(!btree_iter_pos_in_node(iter, l->b)); /* * node iterators don't use leaf node iterator: */ if (btree_iter_type(iter) == BTREE_ITER_NODES && level <= iter->min_depth) goto unlock; bch2_btree_node_iter_verify(&l->iter, l->b); /* * For interior nodes, the iterator will have skipped past * deleted keys: * * For extents, the iterator may have skipped past deleted keys (but not * whiteouts) */ p = level || btree_node_type_is_extents(iter->btree_id) ? bch2_btree_node_iter_prev_filter(&tmp, l->b, KEY_TYPE_discard) : bch2_btree_node_iter_prev_all(&tmp, l->b); k = bch2_btree_node_iter_peek_all(&l->iter, l->b); if (p && bkey_iter_pos_cmp(l->b, p, &iter->real_pos) >= 0) { msg = "before"; goto err; } if (k && bkey_iter_pos_cmp(l->b, k, &iter->real_pos) < 0) { msg = "after"; goto err; } unlock: if (!locked) btree_node_unlock(iter, level); return; err: strcpy(buf1, "(none)"); strcpy(buf2, "(none)"); if (p) { struct bkey uk = bkey_unpack_key(l->b, p); bch2_bkey_to_text(&PBUF(buf1), &uk); } if (k) { struct bkey uk = bkey_unpack_key(l->b, k); bch2_bkey_to_text(&PBUF(buf2), &uk); } panic("iterator should be %s key at level %u:\n" "iter pos %llu:%llu\n" "prev key %s\n" "cur key %s\n", msg, level, iter->real_pos.inode, iter->real_pos.offset, buf1, buf2); } static void bch2_btree_iter_verify(struct btree_iter *iter) { unsigned i; EBUG_ON(iter->btree_id >= BTREE_ID_NR); bch2_btree_iter_verify_locks(iter); for (i = 0; i < BTREE_MAX_DEPTH; i++) bch2_btree_iter_verify_level(iter, i); } static void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) { enum btree_iter_type type = btree_iter_type(iter); BUG_ON((type == BTREE_ITER_KEYS || type == BTREE_ITER_CACHED) && (bkey_cmp(iter->pos, bkey_start_pos(&iter->k)) < 0 || bkey_cmp(iter->pos, iter->k.p) > 0)); } void bch2_btree_trans_verify_iters(struct btree_trans *trans, struct btree *b) { struct btree_iter *iter; if (!bch2_debug_check_iterators) return; trans_for_each_iter_with_node(trans, b, iter) bch2_btree_iter_verify_level(iter, b->c.level); } #else static inline void bch2_btree_iter_verify_level(struct btree_iter *iter, unsigned l) {} static inline void bch2_btree_iter_verify(struct btree_iter *iter) {} static inline void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) {} #endif static void btree_node_iter_set_set_pos(struct btree_node_iter *iter, struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct btree_node_iter_set *set; btree_node_iter_for_each(iter, set) if (set->end == t->end_offset) { set->k = __btree_node_key_to_offset(b, k); bch2_btree_node_iter_sort(iter, b); return; } bch2_btree_node_iter_push(iter, b, k, btree_bkey_last(b, t)); } static void __bch2_btree_iter_fix_key_modified(struct btree_iter *iter, struct btree *b, struct bkey_packed *where) { struct btree_iter_level *l = &iter->l[b->c.level]; if (where != bch2_btree_node_iter_peek_all(&l->iter, l->b)) return; if (bkey_iter_pos_cmp(l->b, where, &iter->real_pos) < 0) bch2_btree_node_iter_advance(&l->iter, l->b); btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); } void bch2_btree_iter_fix_key_modified(struct btree_iter *iter, struct btree *b, struct bkey_packed *where) { struct btree_iter *linked; trans_for_each_iter_with_node(iter->trans, b, linked) { __bch2_btree_iter_fix_key_modified(linked, b, where); bch2_btree_iter_verify_level(linked, b->c.level); } } static void __bch2_btree_node_iter_fix(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bset_tree *t, struct bkey_packed *where, unsigned clobber_u64s, unsigned new_u64s) { const struct bkey_packed *end = btree_bkey_last(b, t); struct btree_node_iter_set *set; unsigned offset = __btree_node_key_to_offset(b, where); int shift = new_u64s - clobber_u64s; unsigned old_end = t->end_offset - shift; unsigned orig_iter_pos = node_iter->data[0].k; bool iter_current_key_modified = orig_iter_pos >= offset && orig_iter_pos <= offset + clobber_u64s; btree_node_iter_for_each(node_iter, set) if (set->end == old_end) goto found; /* didn't find the bset in the iterator - might have to readd it: */ if (new_u64s && bkey_iter_pos_cmp(b, where, &iter->real_pos) >= 0) { bch2_btree_node_iter_push(node_iter, b, where, end); goto fixup_done; } else { /* Iterator is after key that changed */ return; } found: set->end = t->end_offset; /* Iterator hasn't gotten to the key that changed yet: */ if (set->k < offset) return; if (new_u64s && bkey_iter_pos_cmp(b, where, &iter->real_pos) >= 0) { set->k = offset; } else if (set->k < offset + clobber_u64s) { set->k = offset + new_u64s; if (set->k == set->end) bch2_btree_node_iter_set_drop(node_iter, set); } else { /* Iterator is after key that changed */ set->k = (int) set->k + shift; return; } bch2_btree_node_iter_sort(node_iter, b); fixup_done: if (node_iter->data[0].k != orig_iter_pos) iter_current_key_modified = true; /* * When a new key is added, and the node iterator now points to that * key, the iterator might have skipped past deleted keys that should * come after the key the iterator now points to. We have to rewind to * before those deleted keys - otherwise * bch2_btree_node_iter_prev_all() breaks: */ if (!bch2_btree_node_iter_end(node_iter) && iter_current_key_modified && (b->c.level || btree_node_type_is_extents(iter->btree_id))) { struct bset_tree *t; struct bkey_packed *k, *k2, *p; k = bch2_btree_node_iter_peek_all(node_iter, b); for_each_bset(b, t) { bool set_pos = false; if (node_iter->data[0].end == t->end_offset) continue; k2 = bch2_btree_node_iter_bset_pos(node_iter, b, t); while ((p = bch2_bkey_prev_all(b, t, k2)) && bkey_iter_cmp(b, k, p) < 0) { k2 = p; set_pos = true; } if (set_pos) btree_node_iter_set_set_pos(node_iter, b, t, k2); } } if (!b->c.level && node_iter == &iter->l[0].iter && iter_current_key_modified) btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); } void bch2_btree_node_iter_fix(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bkey_packed *where, unsigned clobber_u64s, unsigned new_u64s) { struct bset_tree *t = bch2_bkey_to_bset_inlined(b, where); struct btree_iter *linked; if (node_iter != &iter->l[b->c.level].iter) { __bch2_btree_node_iter_fix(iter, b, node_iter, t, where, clobber_u64s, new_u64s); if (bch2_debug_check_iterators) bch2_btree_node_iter_verify(node_iter, b); } trans_for_each_iter_with_node(iter->trans, b, linked) { __bch2_btree_node_iter_fix(linked, b, &linked->l[b->c.level].iter, t, where, clobber_u64s, new_u64s); bch2_btree_iter_verify_level(linked, b->c.level); } } static inline struct bkey_s_c __btree_iter_unpack(struct btree_iter *iter, struct btree_iter_level *l, struct bkey *u, struct bkey_packed *k) { struct bkey_s_c ret; if (unlikely(!k)) { /* * signal to bch2_btree_iter_peek_slot() that we're currently at * a hole */ u->type = KEY_TYPE_deleted; return bkey_s_c_null; } ret = bkey_disassemble(l->b, k, u); if (bch2_debug_check_bkeys) bch2_bkey_debugcheck(iter->trans->c, l->b, ret); return ret; } /* peek_all() doesn't skip deleted keys */ static inline struct bkey_s_c __btree_iter_peek_all(struct btree_iter *iter, struct btree_iter_level *l, struct bkey *u) { return __btree_iter_unpack(iter, l, u, bch2_btree_node_iter_peek_all(&l->iter, l->b)); } static inline struct bkey_s_c __btree_iter_peek(struct btree_iter *iter, struct btree_iter_level *l) { return __btree_iter_unpack(iter, l, &iter->k, bch2_btree_node_iter_peek(&l->iter, l->b)); } static inline struct bkey_s_c __btree_iter_prev(struct btree_iter *iter, struct btree_iter_level *l) { return __btree_iter_unpack(iter, l, &iter->k, bch2_btree_node_iter_prev(&l->iter, l->b)); } static inline bool btree_iter_advance_to_pos(struct btree_iter *iter, struct btree_iter_level *l, int max_advance) { struct bkey_packed *k; int nr_advanced = 0; while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) && bkey_iter_pos_cmp(l->b, k, &iter->real_pos) < 0) { if (max_advance > 0 && nr_advanced >= max_advance) return false; bch2_btree_node_iter_advance(&l->iter, l->b); nr_advanced++; } return true; } /* * Verify that iterator for parent node points to child node: */ static void btree_iter_verify_new_node(struct btree_iter *iter, struct btree *b) { struct btree_iter_level *l; unsigned plevel; bool parent_locked; struct bkey_packed *k; if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) return; plevel = b->c.level + 1; if (!btree_iter_node(iter, plevel)) return; parent_locked = btree_node_locked(iter, plevel); if (!bch2_btree_node_relock(iter, plevel)) return; l = &iter->l[plevel]; k = bch2_btree_node_iter_peek_all(&l->iter, l->b); if (!k || bkey_deleted(k) || bkey_cmp_left_packed(l->b, k, &b->key.k.p)) { char buf[100]; struct bkey uk = bkey_unpack_key(b, k); bch2_dump_btree_node(iter->trans->c, l->b); bch2_bkey_to_text(&PBUF(buf), &uk); panic("parent iter doesn't point to new node:\n" "iter pos %s %llu:%llu\n" "iter key %s\n" "new node %llu:%llu-%llu:%llu\n", bch2_btree_ids[iter->btree_id], iter->pos.inode, iter->pos.offset, buf, b->data->min_key.inode, b->data->min_key.offset, b->key.k.p.inode, b->key.k.p.offset); } if (!parent_locked) btree_node_unlock(iter, b->c.level + 1); } static inline void __btree_iter_init(struct btree_iter *iter, unsigned level) { struct btree_iter_level *l = &iter->l[level]; bch2_btree_node_iter_init(&l->iter, l->b, &iter->real_pos); /* * Iterators to interior nodes should always be pointed at the first non * whiteout: */ if (level) bch2_btree_node_iter_peek(&l->iter, l->b); btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); } static inline void btree_iter_node_set(struct btree_iter *iter, struct btree *b) { BUG_ON(btree_iter_type(iter) == BTREE_ITER_CACHED); btree_iter_verify_new_node(iter, b); EBUG_ON(!btree_iter_pos_in_node(iter, b)); EBUG_ON(b->c.lock.state.seq & 1); iter->l[b->c.level].lock_seq = b->c.lock.state.seq; iter->l[b->c.level].b = b; __btree_iter_init(iter, b->c.level); } /* * A btree node is being replaced - update the iterator to point to the new * node: */ void bch2_btree_iter_node_replace(struct btree_iter *iter, struct btree *b) { enum btree_node_locked_type t; struct btree_iter *linked; trans_for_each_iter(iter->trans, linked) if (btree_iter_type(linked) != BTREE_ITER_CACHED && btree_iter_pos_in_node(linked, b)) { /* * bch2_btree_iter_node_drop() has already been called - * the old node we're replacing has already been * unlocked and the pointer invalidated */ BUG_ON(btree_node_locked(linked, b->c.level)); t = btree_lock_want(linked, b->c.level); if (t != BTREE_NODE_UNLOCKED) { six_lock_increment(&b->c.lock, (enum six_lock_type) t); mark_btree_node_locked(linked, b->c.level, (enum six_lock_type) t); } btree_iter_node_set(linked, b); } } void bch2_btree_iter_node_drop(struct btree_iter *iter, struct btree *b) { struct btree_iter *linked; unsigned level = b->c.level; trans_for_each_iter(iter->trans, linked) if (linked->l[level].b == b) { __btree_node_unlock(linked, level); linked->l[level].b = BTREE_ITER_NO_NODE_DROP; } } /* * A btree node has been modified in such a way as to invalidate iterators - fix * them: */ void bch2_btree_iter_reinit_node(struct btree_iter *iter, struct btree *b) { struct btree_iter *linked; trans_for_each_iter_with_node(iter->trans, b, linked) __btree_iter_init(linked, b->c.level); } static int lock_root_check_fn(struct six_lock *lock, void *p) { struct btree *b = container_of(lock, struct btree, c.lock); struct btree **rootp = p; return b == *rootp ? 0 : -1; } static inline int btree_iter_lock_root(struct btree_iter *iter, unsigned depth_want, unsigned long trace_ip) { struct bch_fs *c = iter->trans->c; struct btree *b, **rootp = &c->btree_roots[iter->btree_id].b; enum six_lock_type lock_type; unsigned i; EBUG_ON(iter->nodes_locked); while (1) { b = READ_ONCE(*rootp); iter->level = READ_ONCE(b->c.level); if (unlikely(iter->level < depth_want)) { /* * the root is at a lower depth than the depth we want: * got to the end of the btree, or we're walking nodes * greater than some depth and there are no nodes >= * that depth */ iter->level = depth_want; for (i = iter->level; i < BTREE_MAX_DEPTH; i++) iter->l[i].b = NULL; return 1; } lock_type = __btree_lock_want(iter, iter->level); if (unlikely(!btree_node_lock(b, POS_MAX, iter->level, iter, lock_type, lock_root_check_fn, rootp, trace_ip))) return -EINTR; if (likely(b == READ_ONCE(*rootp) && b->c.level == iter->level && !race_fault())) { for (i = 0; i < iter->level; i++) iter->l[i].b = BTREE_ITER_NO_NODE_LOCK_ROOT; iter->l[iter->level].b = b; for (i = iter->level + 1; i < BTREE_MAX_DEPTH; i++) iter->l[i].b = NULL; mark_btree_node_locked(iter, iter->level, lock_type); btree_iter_node_set(iter, b); return 0; } six_unlock_type(&b->c.lock, lock_type); } } noinline static void btree_iter_prefetch(struct btree_iter *iter) { struct bch_fs *c = iter->trans->c; struct btree_iter_level *l = &iter->l[iter->level]; struct btree_node_iter node_iter = l->iter; struct bkey_packed *k; struct bkey_buf tmp; unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) ? (iter->level > 1 ? 0 : 2) : (iter->level > 1 ? 1 : 16); bool was_locked = btree_node_locked(iter, iter->level); bch2_bkey_buf_init(&tmp); while (nr) { if (!bch2_btree_node_relock(iter, iter->level)) break; bch2_btree_node_iter_advance(&node_iter, l->b); k = bch2_btree_node_iter_peek(&node_iter, l->b); if (!k) break; bch2_bkey_buf_unpack(&tmp, c, l->b, k); bch2_btree_node_prefetch(c, iter, tmp.k, iter->btree_id, iter->level - 1); } if (!was_locked) btree_node_unlock(iter, iter->level); bch2_bkey_buf_exit(&tmp, c); } static noinline void btree_node_mem_ptr_set(struct btree_iter *iter, unsigned plevel, struct btree *b) { struct btree_iter_level *l = &iter->l[plevel]; bool locked = btree_node_locked(iter, plevel); struct bkey_packed *k; struct bch_btree_ptr_v2 *bp; if (!bch2_btree_node_relock(iter, plevel)) return; k = bch2_btree_node_iter_peek_all(&l->iter, l->b); BUG_ON(k->type != KEY_TYPE_btree_ptr_v2); bp = (void *) bkeyp_val(&l->b->format, k); bp->mem_ptr = (unsigned long)b; if (!locked) btree_node_unlock(iter, plevel); } static __always_inline int btree_iter_down(struct btree_iter *iter, unsigned long trace_ip) { struct bch_fs *c = iter->trans->c; struct btree_iter_level *l = &iter->l[iter->level]; struct btree *b; unsigned level = iter->level - 1; enum six_lock_type lock_type = __btree_lock_want(iter, level); struct bkey_buf tmp; int ret; EBUG_ON(!btree_node_locked(iter, iter->level)); bch2_bkey_buf_init(&tmp); bch2_bkey_buf_unpack(&tmp, c, l->b, bch2_btree_node_iter_peek(&l->iter, l->b)); b = bch2_btree_node_get(c, iter, tmp.k, level, lock_type, trace_ip); ret = PTR_ERR_OR_ZERO(b); if (unlikely(ret)) goto err; mark_btree_node_locked(iter, level, lock_type); btree_iter_node_set(iter, b); if (tmp.k->k.type == KEY_TYPE_btree_ptr_v2 && unlikely(b != btree_node_mem_ptr(tmp.k))) btree_node_mem_ptr_set(iter, level + 1, b); if (iter->flags & BTREE_ITER_PREFETCH) btree_iter_prefetch(iter); iter->level = level; err: bch2_bkey_buf_exit(&tmp, c); return ret; } static void btree_iter_up(struct btree_iter *iter) { btree_node_unlock(iter, iter->level++); } static int btree_iter_traverse_one(struct btree_iter *, unsigned long); static int __btree_iter_traverse_all(struct btree_trans *trans, int ret) { struct bch_fs *c = trans->c; struct btree_iter *iter; u8 sorted[BTREE_ITER_MAX]; unsigned i, nr_sorted = 0; if (trans->in_traverse_all) return -EINTR; trans->in_traverse_all = true; retry_all: nr_sorted = 0; trans_for_each_iter(trans, iter) sorted[nr_sorted++] = iter->idx; #define btree_iter_cmp_by_idx(_l, _r) \ btree_iter_lock_cmp(&trans->iters[_l], &trans->iters[_r]) bubble_sort(sorted, nr_sorted, btree_iter_cmp_by_idx); #undef btree_iter_cmp_by_idx bch2_trans_unlock(trans); cond_resched(); if (unlikely(ret == -ENOMEM)) { struct closure cl; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(c, &cl); closure_sync(&cl); } while (ret); } if (unlikely(ret == -EIO)) { trans->error = true; goto out; } BUG_ON(ret && ret != -EINTR); /* Now, redo traversals in correct order: */ for (i = 0; i < nr_sorted; i++) { unsigned idx = sorted[i]; /* * sucessfully traversing one iterator can cause another to be * unlinked, in btree_key_cache_fill() */ if (!(trans->iters_linked & (1ULL << idx))) continue; ret = btree_iter_traverse_one(&trans->iters[idx], _THIS_IP_); if (ret) goto retry_all; } if (hweight64(trans->iters_live) > 1) ret = -EINTR; else trans_for_each_iter(trans, iter) if (iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT) { ret = -EINTR; break; } out: bch2_btree_cache_cannibalize_unlock(c); trans->in_traverse_all = false; return ret; } int bch2_btree_iter_traverse_all(struct btree_trans *trans) { return __btree_iter_traverse_all(trans, 0); } static inline bool btree_iter_good_node(struct btree_iter *iter, unsigned l, int check_pos) { if (!is_btree_node(iter, l) || !bch2_btree_node_relock(iter, l)) return false; if (check_pos <= 0 && btree_iter_pos_before_node(iter, iter->l[l].b)) return false; if (check_pos >= 0 && btree_iter_pos_after_node(iter, iter->l[l].b)) return false; return true; } static inline unsigned btree_iter_up_until_good_node(struct btree_iter *iter, int check_pos) { unsigned l = iter->level; while (btree_iter_node(iter, l) && !btree_iter_good_node(iter, l, check_pos)) { btree_node_unlock(iter, l); iter->l[l].b = BTREE_ITER_NO_NODE_UP; l++; } return l; } /* * This is the main state machine for walking down the btree - walks down to a * specified depth * * Returns 0 on success, -EIO on error (error reading in a btree node). * * On error, caller (peek_node()/peek_key()) must return NULL; the error is * stashed in the iterator and returned from bch2_trans_exit(). */ static int btree_iter_traverse_one(struct btree_iter *iter, unsigned long trace_ip) { unsigned depth_want = iter->level; /* * if we need interior nodes locked, call btree_iter_relock() to make * sure we walk back up enough that we lock them: */ if (iter->uptodate == BTREE_ITER_NEED_RELOCK || iter->locks_want > 1) bch2_btree_iter_relock(iter, false); if (btree_iter_type(iter) == BTREE_ITER_CACHED) return bch2_btree_iter_traverse_cached(iter); if (iter->uptodate < BTREE_ITER_NEED_RELOCK) return 0; if (unlikely(iter->level >= BTREE_MAX_DEPTH)) return 0; /* * XXX: correctly using BTREE_ITER_UPTODATE should make using check_pos * here unnecessary */ iter->level = btree_iter_up_until_good_node(iter, 0); /* * If we've got a btree node locked (i.e. we aren't about to relock the * root) - advance its node iterator if necessary: * * XXX correctly using BTREE_ITER_UPTODATE should make this unnecessary */ if (is_btree_node(iter, iter->level)) { BUG_ON(!btree_iter_pos_in_node(iter, iter->l[iter->level].b)); btree_iter_advance_to_pos(iter, &iter->l[iter->level], -1); } /* * Note: iter->nodes[iter->level] may be temporarily NULL here - that * would indicate to other code that we got to the end of the btree, * here it indicates that relocking the root failed - it's critical that * btree_iter_lock_root() comes next and that it can't fail */ while (iter->level > depth_want) { int ret = btree_iter_node(iter, iter->level) ? btree_iter_down(iter, trace_ip) : btree_iter_lock_root(iter, depth_want, trace_ip); if (unlikely(ret)) { if (ret == 1) return 0; iter->level = depth_want; if (ret == -EIO) { iter->flags |= BTREE_ITER_ERROR; iter->l[iter->level].b = BTREE_ITER_NO_NODE_ERROR; } else { iter->l[iter->level].b = BTREE_ITER_NO_NODE_DOWN; } return ret; } } iter->uptodate = BTREE_ITER_NEED_PEEK; bch2_btree_iter_verify(iter); return 0; } int __must_check __bch2_btree_iter_traverse(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; int ret; ret = bch2_trans_cond_resched(trans) ?: btree_iter_traverse_one(iter, _RET_IP_); if (unlikely(ret)) ret = __btree_iter_traverse_all(trans, ret); return ret; } /* Iterate across nodes (leaf and interior nodes) */ struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter) { struct btree *b; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_NODES); bch2_btree_iter_verify(iter); if (iter->uptodate == BTREE_ITER_UPTODATE) return iter->l[iter->level].b; ret = bch2_btree_iter_traverse(iter); if (ret) return NULL; b = btree_iter_node(iter, iter->level); if (!b) return NULL; BUG_ON(bkey_cmp(b->key.k.p, iter->pos) < 0); iter->pos = iter->real_pos = b->key.k.p; iter->uptodate = BTREE_ITER_UPTODATE; bch2_btree_iter_verify(iter); return b; } struct btree *bch2_btree_iter_next_node(struct btree_iter *iter) { struct btree *b; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_NODES); bch2_btree_iter_verify(iter); /* already got to end? */ if (!btree_iter_node(iter, iter->level)) return NULL; bch2_trans_cond_resched(iter->trans); btree_iter_up(iter); if (!bch2_btree_node_relock(iter, iter->level)) btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK); ret = bch2_btree_iter_traverse(iter); if (ret) return NULL; /* got to end? */ b = btree_iter_node(iter, iter->level); if (!b) return NULL; if (bkey_cmp(iter->pos, b->key.k.p) < 0) { /* * Haven't gotten to the end of the parent node: go back down to * the next child node */ /* * We don't really want to be unlocking here except we can't * directly tell btree_iter_traverse() "traverse to this level" * except by setting iter->level, so we have to unlock so we * don't screw up our lock invariants: */ if (btree_node_read_locked(iter, iter->level)) btree_node_unlock(iter, iter->level); iter->pos = iter->real_pos = bkey_successor(iter->pos); iter->level = iter->min_depth; btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ret = bch2_btree_iter_traverse(iter); if (ret) return NULL; b = iter->l[iter->level].b; } iter->pos = iter->real_pos = b->key.k.p; iter->uptodate = BTREE_ITER_UPTODATE; bch2_btree_iter_verify(iter); return b; } /* Iterate across keys (in leaf nodes only) */ static void btree_iter_pos_changed(struct btree_iter *iter, int cmp) { unsigned l = iter->level; if (!cmp) goto out; if (unlikely(btree_iter_type(iter) == BTREE_ITER_CACHED)) { btree_node_unlock(iter, 0); iter->l[0].b = BTREE_ITER_NO_NODE_UP; btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); return; } l = btree_iter_up_until_good_node(iter, cmp); if (btree_iter_node(iter, l)) { /* * We might have to skip over many keys, or just a few: try * advancing the node iterator, and if we have to skip over too * many keys just reinit it (or if we're rewinding, since that * is expensive). */ if (cmp < 0 || !btree_iter_advance_to_pos(iter, &iter->l[l], 8)) __btree_iter_init(iter, l); /* Don't leave it locked if we're not supposed to: */ if (btree_lock_want(iter, l) == BTREE_NODE_UNLOCKED) btree_node_unlock(iter, l); } out: if (l != iter->level) btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); else btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); } static void btree_iter_set_search_pos(struct btree_iter *iter, struct bpos new_pos) { int cmp = bkey_cmp(new_pos, iter->real_pos); iter->real_pos = new_pos; btree_iter_pos_changed(iter, cmp); bch2_btree_iter_verify(iter); } void __bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos, bool strictly_greater) { bkey_init(&iter->k); iter->k.p = iter->pos = new_pos; iter->flags &= ~BTREE_ITER_IS_EXTENTS; iter->flags |= strictly_greater ? BTREE_ITER_IS_EXTENTS : 0; btree_iter_set_search_pos(iter, btree_iter_search_key(iter)); } void bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos) { __bch2_btree_iter_set_pos(iter, new_pos, (iter->flags & BTREE_ITER_IS_EXTENTS) != 0); } static inline bool bch2_btree_iter_advance_pos(struct btree_iter *iter) { struct bpos pos = iter->k.p; bool ret = bkey_cmp(pos, POS_MAX) != 0; if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) pos = bkey_successor(pos); bch2_btree_iter_set_pos(iter, pos); return ret; } static inline bool bch2_btree_iter_rewind_pos(struct btree_iter *iter) { struct bpos pos = bkey_start_pos(&iter->k); bool ret = bkey_cmp(pos, POS_MIN) != 0; if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) pos = bkey_predecessor(pos); bch2_btree_iter_set_pos(iter, pos); return ret; } static inline bool btree_iter_set_pos_to_next_leaf(struct btree_iter *iter) { struct bpos next_pos = iter->l[0].b->key.k.p; bool ret = bkey_cmp(next_pos, POS_MAX) != 0; /* * Typically, we don't want to modify iter->pos here, since that * indicates where we searched from - unless we got to the end of the * btree, in that case we want iter->pos to reflect that: */ if (ret) btree_iter_set_search_pos(iter, bkey_successor(next_pos)); else bch2_btree_iter_set_pos(iter, POS_MAX); return ret; } static inline bool btree_iter_set_pos_to_prev_leaf(struct btree_iter *iter) { struct bpos next_pos = iter->l[0].b->data->min_key; bool ret = bkey_cmp(next_pos, POS_MIN) != 0; if (ret) btree_iter_set_search_pos(iter, bkey_predecessor(next_pos)); else bch2_btree_iter_set_pos(iter, POS_MIN); return ret; } /** * btree_iter_peek_uptodate - given an iterator that is uptodate, return the key * it currently points to */ static inline struct bkey_s_c btree_iter_peek_uptodate(struct btree_iter *iter) { struct btree_iter_level *l = &iter->l[0]; struct bkey_s_c ret = { .k = &iter->k }; if (!bkey_deleted(&iter->k)) { struct bkey_packed *_k = __bch2_btree_node_iter_peek_all(&l->iter, l->b); ret.v = bkeyp_val(&l->b->format, _k); if (bch2_debug_check_iterators) { struct bkey k = bkey_unpack_key(l->b, _k); BUG_ON(memcmp(&k, &iter->k, sizeof(k))); } if (bch2_debug_check_bkeys) bch2_bkey_debugcheck(iter->trans->c, l->b, ret); } return ret; } /** * bch2_btree_iter_peek: returns first key greater than or equal to iterator's * current position */ struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *iter) { struct btree_iter_level *l = &iter->l[0]; struct bkey_s_c k; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); btree_iter_set_search_pos(iter, btree_iter_search_key(iter)); if (iter->uptodate == BTREE_ITER_UPTODATE && !bkey_deleted(&iter->k)) return btree_iter_peek_uptodate(iter); while (1) { ret = bch2_btree_iter_traverse(iter); if (unlikely(ret)) return bkey_s_c_err(ret); k = __btree_iter_peek(iter, l); if (likely(k.k)) break; if (!btree_iter_set_pos_to_next_leaf(iter)) return bkey_s_c_null; } /* * iter->pos should always be equal to the key we just * returned - except extents can straddle iter->pos: */ if (bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) iter->pos = bkey_start_pos(k.k); iter->real_pos = k.k->p; iter->uptodate = BTREE_ITER_UPTODATE; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return k; } /** * bch2_btree_iter_next: returns first key greater than iterator's current * position */ struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter) { if (!bch2_btree_iter_advance_pos(iter)) return bkey_s_c_null; return bch2_btree_iter_peek(iter); } static struct bkey_s_c __btree_trans_updates_peek(struct btree_iter *iter) { struct bpos pos = btree_iter_search_key(iter); struct btree_trans *trans = iter->trans; struct btree_insert_entry *i; trans_for_each_update2(trans, i) if ((cmp_int(iter->btree_id, i->iter->btree_id) ?: bkey_cmp(pos, i->k->k.p)) <= 0) break; return i < trans->updates2 + trans->nr_updates2 && iter->btree_id == i->iter->btree_id ? bkey_i_to_s_c(i->k) : bkey_s_c_null; } static struct bkey_s_c __bch2_btree_iter_peek_with_updates(struct btree_iter *iter) { struct btree_iter_level *l = &iter->l[0]; struct bkey_s_c k = __btree_iter_peek(iter, l); struct bkey_s_c u = __btree_trans_updates_peek(iter); if (k.k && (!u.k || bkey_cmp(k.k->p, u.k->p) < 0)) return k; if (u.k && bkey_cmp(u.k->p, l->b->key.k.p) <= 0) { iter->k = *u.k; return u; } return bkey_s_c_null; } struct bkey_s_c bch2_btree_iter_peek_with_updates(struct btree_iter *iter) { struct bkey_s_c k; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); bch2_btree_iter_verify(iter); while (1) { ret = bch2_btree_iter_traverse(iter); if (unlikely(ret)) return bkey_s_c_err(ret); k = __bch2_btree_iter_peek_with_updates(iter); if (k.k && bkey_deleted(k.k)) { bch2_btree_iter_advance_pos(iter); continue; } if (likely(k.k)) break; if (!btree_iter_set_pos_to_next_leaf(iter)) return bkey_s_c_null; } /* * iter->pos should be mononotically increasing, and always be equal to * the key we just returned - except extents can straddle iter->pos: */ if (bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) iter->pos = bkey_start_pos(k.k); iter->uptodate = BTREE_ITER_UPTODATE; return k; } struct bkey_s_c bch2_btree_iter_next_with_updates(struct btree_iter *iter) { if (!bch2_btree_iter_advance_pos(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_with_updates(iter); } /** * bch2_btree_iter_peek_prev: returns first key less than or equal to * iterator's current position */ struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *iter) { struct bpos pos = iter->pos; struct btree_iter_level *l = &iter->l[0]; struct bkey_s_c k; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); btree_iter_set_search_pos(iter, iter->pos); if (iter->uptodate == BTREE_ITER_UPTODATE && !bkey_deleted(&iter->k)) return btree_iter_peek_uptodate(iter); while (1) { ret = bch2_btree_iter_traverse(iter); if (unlikely(ret)) { k = bkey_s_c_err(ret); goto no_key; } k = __btree_iter_peek(iter, l); if (!k.k || ((iter->flags & BTREE_ITER_IS_EXTENTS) ? bkey_cmp(bkey_start_pos(k.k), pos) >= 0 : bkey_cmp(bkey_start_pos(k.k), pos) > 0)) k = __btree_iter_prev(iter, l); if (likely(k.k)) break; if (!btree_iter_set_pos_to_prev_leaf(iter)) { k = bkey_s_c_null; goto no_key; } } EBUG_ON(bkey_cmp(bkey_start_pos(k.k), pos) > 0); /* Extents can straddle iter->pos: */ if (bkey_cmp(k.k->p, pos) < 0) iter->pos = k.k->p; iter->real_pos = k.k->p; iter->uptodate = BTREE_ITER_UPTODATE; out: bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return k; no_key: /* * __btree_iter_peek() may have set iter->k to a key we didn't want, and * then we errored going to the previous leaf - make sure it's * consistent with iter->pos: */ BUG_ON(bkey_cmp(pos, iter->pos) && bkey_cmp(iter->pos, POS_MIN)); bkey_init(&iter->k); iter->k.p = iter->pos; goto out; } /** * bch2_btree_iter_prev: returns first key less than iterator's current * position */ struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter) { if (!bch2_btree_iter_rewind_pos(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_prev(iter); } static inline struct bkey_s_c __bch2_btree_iter_peek_slot_extents(struct btree_iter *iter) { struct bkey_s_c k; struct bpos pos, next_start; /* keys & holes can't span inode numbers: */ if (iter->pos.offset == KEY_OFFSET_MAX) { if (iter->pos.inode == KEY_INODE_MAX) return bkey_s_c_null; bch2_btree_iter_set_pos(iter, bkey_successor(iter->pos)); } pos = iter->pos; k = bch2_btree_iter_peek(iter); iter->pos = pos; if (bkey_err(k)) return k; if (k.k && bkey_cmp(bkey_start_pos(k.k), iter->pos) <= 0) return k; next_start = k.k ? bkey_start_pos(k.k) : POS_MAX; bkey_init(&iter->k); iter->k.p = iter->pos; bch2_key_resize(&iter->k, min_t(u64, KEY_SIZE_MAX, (next_start.inode == iter->pos.inode ? next_start.offset : KEY_OFFSET_MAX) - iter->pos.offset)); EBUG_ON(!iter->k.size); iter->uptodate = BTREE_ITER_UPTODATE; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return (struct bkey_s_c) { &iter->k, NULL }; } struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter) { struct btree_iter_level *l = &iter->l[0]; struct bkey_s_c k; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); btree_iter_set_search_pos(iter, btree_iter_search_key(iter)); if (iter->uptodate == BTREE_ITER_UPTODATE) return btree_iter_peek_uptodate(iter); if (iter->flags & BTREE_ITER_IS_EXTENTS) return __bch2_btree_iter_peek_slot_extents(iter); ret = bch2_btree_iter_traverse(iter); if (unlikely(ret)) return bkey_s_c_err(ret); k = __btree_iter_peek_all(iter, l, &iter->k); EBUG_ON(k.k && bkey_deleted(k.k) && bkey_cmp(k.k->p, iter->pos) == 0); if (!k.k || bkey_cmp(iter->pos, k.k->p)) { /* hole */ bkey_init(&iter->k); iter->k.p = iter->pos; k = (struct bkey_s_c) { &iter->k, NULL }; } iter->uptodate = BTREE_ITER_UPTODATE; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return k; } struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter) { if (!bch2_btree_iter_advance_pos(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_slot(iter); } struct bkey_s_c bch2_btree_iter_peek_cached(struct btree_iter *iter) { struct bkey_cached *ck; int ret; EBUG_ON(btree_iter_type(iter) != BTREE_ITER_CACHED); bch2_btree_iter_verify(iter); ret = bch2_btree_iter_traverse(iter); if (unlikely(ret)) return bkey_s_c_err(ret); ck = (void *) iter->l[0].b; EBUG_ON(iter->btree_id != ck->key.btree_id || bkey_cmp(iter->pos, ck->key.pos)); BUG_ON(!ck->valid); return bkey_i_to_s_c(ck->k); } static inline void bch2_btree_iter_init(struct btree_trans *trans, struct btree_iter *iter, enum btree_id btree_id, struct bpos pos, unsigned flags) { struct bch_fs *c = trans->c; unsigned i; if (btree_node_type_is_extents(btree_id) && !(flags & BTREE_ITER_NODES)) flags |= BTREE_ITER_IS_EXTENTS; iter->trans = trans; iter->pos = pos; bkey_init(&iter->k); iter->k.p = pos; iter->flags = flags; iter->real_pos = btree_iter_search_key(iter); iter->uptodate = BTREE_ITER_NEED_TRAVERSE; iter->btree_id = btree_id; iter->level = 0; iter->min_depth = 0; iter->locks_want = flags & BTREE_ITER_INTENT ? 1 : 0; iter->nodes_locked = 0; iter->nodes_intent_locked = 0; for (i = 0; i < ARRAY_SIZE(iter->l); i++) iter->l[i].b = BTREE_ITER_NO_NODE_INIT; prefetch(c->btree_roots[btree_id].b); } /* new transactional stuff: */ static inline void __bch2_trans_iter_free(struct btree_trans *trans, unsigned idx) { __bch2_btree_iter_unlock(&trans->iters[idx]); trans->iters_linked &= ~(1ULL << idx); trans->iters_live &= ~(1ULL << idx); trans->iters_touched &= ~(1ULL << idx); } int bch2_trans_iter_put(struct btree_trans *trans, struct btree_iter *iter) { int ret; if (IS_ERR_OR_NULL(iter)) return 0; BUG_ON(trans->iters + iter->idx != iter); ret = btree_iter_err(iter); if (!(trans->iters_touched & (1ULL << iter->idx)) && !(iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT)) __bch2_trans_iter_free(trans, iter->idx); trans->iters_live &= ~(1ULL << iter->idx); return ret; } int bch2_trans_iter_free(struct btree_trans *trans, struct btree_iter *iter) { if (IS_ERR_OR_NULL(iter)) return 0; trans->iters_touched &= ~(1ULL << iter->idx); return bch2_trans_iter_put(trans, iter); } noinline __cold static void btree_trans_iter_alloc_fail(struct btree_trans *trans) { struct btree_iter *iter; struct btree_insert_entry *i; trans_for_each_iter(trans, iter) printk(KERN_ERR "iter: btree %s pos %llu:%llu%s%s%s %ps\n", bch2_btree_ids[iter->btree_id], iter->pos.inode, iter->pos.offset, (trans->iters_live & (1ULL << iter->idx)) ? " live" : "", (trans->iters_touched & (1ULL << iter->idx)) ? " touched" : "", iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT ? " keep" : "", (void *) iter->ip_allocated); trans_for_each_update(trans, i) { char buf[300]; bch2_bkey_val_to_text(&PBUF(buf), trans->c, bkey_i_to_s_c(i->k)); printk(KERN_ERR "update: btree %s %s\n", bch2_btree_ids[i->iter->btree_id], buf); } panic("trans iter oveflow\n"); } static struct btree_iter *btree_trans_iter_alloc(struct btree_trans *trans) { unsigned idx; if (unlikely(trans->iters_linked == ~((~0ULL << 1) << (BTREE_ITER_MAX - 1)))) btree_trans_iter_alloc_fail(trans); idx = __ffs64(~trans->iters_linked); trans->iters_linked |= 1ULL << idx; trans->iters[idx].idx = idx; trans->iters[idx].flags = 0; return &trans->iters[idx]; } static inline void btree_iter_copy(struct btree_iter *dst, struct btree_iter *src) { unsigned i, idx = dst->idx; *dst = *src; dst->idx = idx; dst->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; for (i = 0; i < BTREE_MAX_DEPTH; i++) if (btree_node_locked(dst, i)) six_lock_increment(&dst->l[i].b->c.lock, __btree_lock_want(dst, i)); dst->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; dst->flags &= ~BTREE_ITER_SET_POS_AFTER_COMMIT; } static inline struct bpos bpos_diff(struct bpos l, struct bpos r) { if (bkey_cmp(l, r) > 0) swap(l, r); return POS(r.inode - l.inode, r.offset - l.offset); } static struct btree_iter *__btree_trans_get_iter(struct btree_trans *trans, unsigned btree_id, struct bpos pos, unsigned flags) { struct btree_iter *iter, *best = NULL; trans_for_each_iter(trans, iter) { if (btree_iter_type(iter) != (flags & BTREE_ITER_TYPE)) continue; if (iter->btree_id != btree_id) continue; if (best && bkey_cmp(bpos_diff(best->pos, pos), bpos_diff(iter->real_pos, pos)) < 0) continue; best = iter; } if (!best) { iter = btree_trans_iter_alloc(trans); bch2_btree_iter_init(trans, iter, btree_id, pos, flags); } else if ((trans->iters_live & (1ULL << best->idx)) || (best->flags & BTREE_ITER_KEEP_UNTIL_COMMIT)) { iter = btree_trans_iter_alloc(trans); btree_iter_copy(iter, best); } else { iter = best; } iter->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; iter->flags &= ~BTREE_ITER_USER_FLAGS; iter->flags |= flags & BTREE_ITER_USER_FLAGS; if (iter->flags & BTREE_ITER_INTENT) { if (!iter->locks_want) { __bch2_btree_iter_unlock(iter); iter->locks_want = 1; } } else bch2_btree_iter_downgrade(iter); BUG_ON(iter->btree_id != btree_id); BUG_ON((iter->flags ^ flags) & BTREE_ITER_TYPE); BUG_ON(iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT); BUG_ON(iter->flags & BTREE_ITER_SET_POS_AFTER_COMMIT); BUG_ON(trans->iters_live & (1ULL << iter->idx)); trans->iters_live |= 1ULL << iter->idx; trans->iters_touched |= 1ULL << iter->idx; return iter; } struct btree_iter *__bch2_trans_get_iter(struct btree_trans *trans, enum btree_id btree_id, struct bpos pos, unsigned flags) { struct btree_iter *iter = __btree_trans_get_iter(trans, btree_id, pos, flags); __bch2_btree_iter_set_pos(iter, pos, btree_node_type_is_extents(btree_id)); return iter; } struct btree_iter *bch2_trans_get_node_iter(struct btree_trans *trans, enum btree_id btree_id, struct bpos pos, unsigned locks_want, unsigned depth, unsigned flags) { struct btree_iter *iter = __btree_trans_get_iter(trans, btree_id, pos, flags|BTREE_ITER_NODES); unsigned i; BUG_ON(bkey_cmp(iter->pos, pos)); iter->locks_want = locks_want; iter->level = depth; iter->min_depth = depth; for (i = 0; i < ARRAY_SIZE(iter->l); i++) iter->l[i].b = NULL; iter->l[iter->level].b = BTREE_ITER_NO_NODE_INIT; return iter; } struct btree_iter *__bch2_trans_copy_iter(struct btree_trans *trans, struct btree_iter *src) { struct btree_iter *iter; iter = btree_trans_iter_alloc(trans); btree_iter_copy(iter, src); trans->iters_live |= 1ULL << iter->idx; /* * We don't need to preserve this iter since it's cheap to copy it * again - this will cause trans_iter_put() to free it right away: */ trans->iters_touched &= ~(1ULL << iter->idx); return iter; } static int bch2_trans_preload_mem(struct btree_trans *trans, size_t size) { if (size > trans->mem_bytes) { size_t old_bytes = trans->mem_bytes; size_t new_bytes = roundup_pow_of_two(size); void *new_mem = krealloc(trans->mem, new_bytes, GFP_NOFS); if (!new_mem) return -ENOMEM; trans->mem = new_mem; trans->mem_bytes = new_bytes; if (old_bytes) { trace_trans_restart_mem_realloced(trans->ip, new_bytes); return -EINTR; } } return 0; } void *bch2_trans_kmalloc(struct btree_trans *trans, size_t size) { void *p; int ret; ret = bch2_trans_preload_mem(trans, trans->mem_top + size); if (ret) return ERR_PTR(ret); p = trans->mem + trans->mem_top; trans->mem_top += size; return p; } inline void bch2_trans_unlink_iters(struct btree_trans *trans) { u64 iters = trans->iters_linked & ~trans->iters_touched & ~trans->iters_live; while (iters) { unsigned idx = __ffs64(iters); iters &= ~(1ULL << idx); __bch2_trans_iter_free(trans, idx); } } void bch2_trans_reset(struct btree_trans *trans, unsigned flags) { struct btree_iter *iter; trans_for_each_iter(trans, iter) iter->flags &= ~(BTREE_ITER_KEEP_UNTIL_COMMIT| BTREE_ITER_SET_POS_AFTER_COMMIT); bch2_trans_unlink_iters(trans); trans->iters_touched &= trans->iters_live; trans->nr_updates = 0; trans->nr_updates2 = 0; trans->mem_top = 0; trans->extra_journal_entries = NULL; trans->extra_journal_entry_u64s = 0; if (trans->fs_usage_deltas) { trans->fs_usage_deltas->used = 0; memset((void *) trans->fs_usage_deltas + offsetof(struct replicas_delta_list, memset_start), 0, (void *) &trans->fs_usage_deltas->memset_end - (void *) &trans->fs_usage_deltas->memset_start); } if (!(flags & TRANS_RESET_NOTRAVERSE)) bch2_btree_iter_traverse_all(trans); } static void bch2_trans_alloc_iters(struct btree_trans *trans, struct bch_fs *c) { size_t iters_bytes = sizeof(struct btree_iter) * BTREE_ITER_MAX; size_t updates_bytes = sizeof(struct btree_insert_entry) * BTREE_ITER_MAX; void *p = NULL; BUG_ON(trans->used_mempool); #ifdef __KERNEL__ p = this_cpu_xchg(c->btree_iters_bufs->iter, NULL); #endif if (!p) p = mempool_alloc(&trans->c->btree_iters_pool, GFP_NOFS); trans->iters = p; p += iters_bytes; trans->updates = p; p += updates_bytes; trans->updates2 = p; p += updates_bytes; } void bch2_trans_init(struct btree_trans *trans, struct bch_fs *c, unsigned expected_nr_iters, size_t expected_mem_bytes) { memset(trans, 0, sizeof(*trans)); trans->c = c; trans->ip = _RET_IP_; /* * reallocating iterators currently completely breaks * bch2_trans_iter_put(), we always allocate the max: */ bch2_trans_alloc_iters(trans, c); if (expected_mem_bytes) { expected_mem_bytes = roundup_pow_of_two(expected_mem_bytes); trans->mem = kmalloc(expected_mem_bytes, GFP_KERNEL); if (trans->mem) trans->mem_bytes = expected_mem_bytes; } trans->srcu_idx = srcu_read_lock(&c->btree_trans_barrier); #ifdef CONFIG_BCACHEFS_DEBUG trans->pid = current->pid; mutex_lock(&c->btree_trans_lock); list_add(&trans->list, &c->btree_trans_list); mutex_unlock(&c->btree_trans_lock); #endif } int bch2_trans_exit(struct btree_trans *trans) { struct bch_fs *c = trans->c; bch2_trans_unlock(trans); #ifdef CONFIG_BCACHEFS_DEBUG mutex_lock(&trans->c->btree_trans_lock); list_del(&trans->list); mutex_unlock(&trans->c->btree_trans_lock); #endif srcu_read_unlock(&c->btree_trans_barrier, trans->srcu_idx); bch2_journal_preres_put(&trans->c->journal, &trans->journal_preres); kfree(trans->fs_usage_deltas); kfree(trans->mem); #ifdef __KERNEL__ /* * Userspace doesn't have a real percpu implementation: */ trans->iters = this_cpu_xchg(c->btree_iters_bufs->iter, trans->iters); #endif if (trans->iters) mempool_free(trans->iters, &trans->c->btree_iters_pool); trans->mem = (void *) 0x1; trans->iters = (void *) 0x1; return trans->error ? -EIO : 0; } static void __maybe_unused bch2_btree_iter_node_to_text(struct printbuf *out, struct btree_bkey_cached_common *_b, enum btree_iter_type type) { pr_buf(out, " %px l=%u %s:", _b, _b->level, bch2_btree_ids[_b->btree_id]); bch2_bpos_to_text(out, btree_node_pos(_b, type)); } void bch2_btree_trans_to_text(struct printbuf *out, struct bch_fs *c) { #ifdef CONFIG_BCACHEFS_DEBUG struct btree_trans *trans; struct btree_iter *iter; struct btree *b; unsigned l; mutex_lock(&c->btree_trans_lock); list_for_each_entry(trans, &c->btree_trans_list, list) { pr_buf(out, "%i %px %ps\n", trans->pid, trans, (void *) trans->ip); trans_for_each_iter(trans, iter) { if (!iter->nodes_locked) continue; pr_buf(out, " iter %u %s:", iter->idx, bch2_btree_ids[iter->btree_id]); bch2_bpos_to_text(out, iter->pos); pr_buf(out, "\n"); for (l = 0; l < BTREE_MAX_DEPTH; l++) { if (btree_node_locked(iter, l)) { pr_buf(out, " %s l=%u ", btree_node_intent_locked(iter, l) ? "i" : "r", l); bch2_btree_iter_node_to_text(out, (void *) iter->l[l].b, btree_iter_type(iter)); pr_buf(out, "\n"); } } } b = READ_ONCE(trans->locking); if (b) { pr_buf(out, " locking iter %u l=%u %s:", trans->locking_iter_idx, trans->locking_level, bch2_btree_ids[trans->locking_btree_id]); bch2_bpos_to_text(out, trans->locking_pos); pr_buf(out, " node "); bch2_btree_iter_node_to_text(out, (void *) b, btree_iter_type(&trans->iters[trans->locking_iter_idx])); pr_buf(out, "\n"); } } mutex_unlock(&c->btree_trans_lock); #endif } void bch2_fs_btree_iter_exit(struct bch_fs *c) { mempool_exit(&c->btree_iters_pool); cleanup_srcu_struct(&c->btree_trans_barrier); } int bch2_fs_btree_iter_init(struct bch_fs *c) { unsigned nr = BTREE_ITER_MAX; INIT_LIST_HEAD(&c->btree_trans_list); mutex_init(&c->btree_trans_lock); return init_srcu_struct(&c->btree_trans_barrier) ?: mempool_init_kmalloc_pool(&c->btree_iters_pool, 1, sizeof(struct btree_iter) * nr + sizeof(struct btree_insert_entry) * nr + sizeof(struct btree_insert_entry) * nr); }