// SPDX-License-Identifier: GPL-2.0 /* * Code for manipulating bucket marks for garbage collection. * * Copyright 2014 Datera, Inc. * * Bucket states: * - free bucket: mark == 0 * The bucket contains no data and will not be read * * - allocator bucket: owned_by_allocator == 1 * The bucket is on a free list, or it is an open bucket * * - cached bucket: owned_by_allocator == 0 && * dirty_sectors == 0 && * cached_sectors > 0 * The bucket contains data but may be safely discarded as there are * enough replicas of the data on other cache devices, or it has been * written back to the backing device * * - dirty bucket: owned_by_allocator == 0 && * dirty_sectors > 0 * The bucket contains data that we must not discard (either only copy, * or one of the 'main copies' for data requiring multiple replicas) * * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 * This is a btree node, journal or gen/prio bucket * * Lifecycle: * * bucket invalidated => bucket on freelist => open bucket => * [dirty bucket =>] cached bucket => bucket invalidated => ... * * Note that cache promotion can skip the dirty bucket step, as data * is copied from a deeper tier to a shallower tier, onto a cached * bucket. * Note also that a cached bucket can spontaneously become dirty -- * see below. * * Only a traversal of the key space can determine whether a bucket is * truly dirty or cached. * * Transitions: * * - free => allocator: bucket was invalidated * - cached => allocator: bucket was invalidated * * - allocator => dirty: open bucket was filled up * - allocator => cached: open bucket was filled up * - allocator => metadata: metadata was allocated * * - dirty => cached: dirty sectors were copied to a deeper tier * - dirty => free: dirty sectors were overwritten or moved (copy gc) * - cached => free: cached sectors were overwritten * * - metadata => free: metadata was freed * * Oddities: * - cached => dirty: a device was removed so formerly replicated data * is no longer sufficiently replicated * - free => cached: cannot happen * - free => dirty: cannot happen * - free => metadata: cannot happen */ #include "bcachefs.h" #include "alloc_background.h" #include "bset.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "ec.h" #include "error.h" #include "movinggc.h" #include "replicas.h" #include "trace.h" #include /* * Clear journal_seq_valid for buckets for which it's not needed, to prevent * wraparound: */ void bch2_bucket_seq_cleanup(struct bch_fs *c) { u64 journal_seq = atomic64_read(&c->journal.seq); u16 last_seq_ondisk = c->journal.last_seq_ondisk; struct bch_dev *ca; struct bucket_array *buckets; struct bucket *g; struct bucket_mark m; unsigned i; if (journal_seq - c->last_bucket_seq_cleanup < (1U << (BUCKET_JOURNAL_SEQ_BITS - 2))) return; c->last_bucket_seq_cleanup = journal_seq; for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) { bucket_cmpxchg(g, m, ({ if (!m.journal_seq_valid || bucket_needs_journal_commit(m, last_seq_ondisk)) break; m.journal_seq_valid = 0; })); } up_read(&ca->bucket_lock); } } void bch2_fs_usage_initialize(struct bch_fs *c) { struct bch_fs_usage *usage; unsigned i; percpu_down_write(&c->mark_lock); usage = (void *) bch2_acc_percpu_u64s((void *) c->usage[0], fs_usage_u64s(c)); for (i = 0; i < BCH_REPLICAS_MAX; i++) usage->reserved += usage->persistent_reserved[i]; for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); switch (e->data_type) { case BCH_DATA_BTREE: usage->btree += usage->replicas[i]; break; case BCH_DATA_USER: usage->data += usage->replicas[i]; break; case BCH_DATA_CACHED: usage->cached += usage->replicas[i]; break; } } percpu_up_write(&c->mark_lock); } void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage *fs_usage) { if (fs_usage == c->usage_scratch) mutex_unlock(&c->usage_scratch_lock); else kfree(fs_usage); } struct bch_fs_usage *bch2_fs_usage_scratch_get(struct bch_fs *c) { struct bch_fs_usage *ret; unsigned bytes = fs_usage_u64s(c) * sizeof(u64); ret = kzalloc(bytes, GFP_NOWAIT); if (ret) return ret; if (mutex_trylock(&c->usage_scratch_lock)) goto out_pool; ret = kzalloc(bytes, GFP_NOFS); if (ret) return ret; mutex_lock(&c->usage_scratch_lock); out_pool: ret = c->usage_scratch; memset(ret, 0, bytes); return ret; } struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca) { struct bch_dev_usage ret; memset(&ret, 0, sizeof(ret)); acc_u64s_percpu((u64 *) &ret, (u64 __percpu *) ca->usage[0], sizeof(ret) / sizeof(u64)); return ret; } struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *c) { struct bch_fs_usage *ret; unsigned v, u64s = fs_usage_u64s(c); retry: ret = kzalloc(u64s * sizeof(u64), GFP_NOFS); if (unlikely(!ret)) return NULL; percpu_down_read(&c->mark_lock); v = fs_usage_u64s(c); if (unlikely(u64s != v)) { u64s = v; percpu_up_read(&c->mark_lock); kfree(ret); goto retry; } acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[0], u64s); return ret; } #define RESERVE_FACTOR 6 static u64 reserve_factor(u64 r) { return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); } static u64 avail_factor(u64 r) { return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1); } u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage *fs_usage) { return min(fs_usage->hidden + fs_usage->btree + fs_usage->data + reserve_factor(fs_usage->reserved + fs_usage->online_reserved), c->capacity); } static struct bch_fs_usage_short __bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; u64 data, reserved; ret.capacity = c->capacity - percpu_u64_get(&c->usage[0]->hidden); data = percpu_u64_get(&c->usage[0]->data) + percpu_u64_get(&c->usage[0]->btree); reserved = percpu_u64_get(&c->usage[0]->reserved) + percpu_u64_get(&c->usage[0]->online_reserved); ret.used = min(ret.capacity, data + reserve_factor(reserved)); ret.free = ret.capacity - ret.used; ret.nr_inodes = percpu_u64_get(&c->usage[0]->nr_inodes); return ret; } struct bch_fs_usage_short bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; percpu_down_read(&c->mark_lock); ret = __bch2_fs_usage_read_short(c); percpu_up_read(&c->mark_lock); return ret; } static inline int is_unavailable_bucket(struct bucket_mark m) { return !is_available_bucket(m); } static inline int is_fragmented_bucket(struct bucket_mark m, struct bch_dev *ca) { if (!m.owned_by_allocator && m.data_type == BCH_DATA_USER && bucket_sectors_used(m)) return max_t(int, 0, (int) ca->mi.bucket_size - bucket_sectors_used(m)); return 0; } static inline enum bch_data_type bucket_type(struct bucket_mark m) { return m.cached_sectors && !m.dirty_sectors ? BCH_DATA_CACHED : m.data_type; } static bool bucket_became_unavailable(struct bucket_mark old, struct bucket_mark new) { return is_available_bucket(old) && !is_available_bucket(new); } int bch2_fs_usage_apply(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct disk_reservation *disk_res) { s64 added = fs_usage->data + fs_usage->reserved; s64 should_not_have_added; int ret = 0; percpu_rwsem_assert_held(&c->mark_lock); /* * Not allowed to reduce sectors_available except by getting a * reservation: */ should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0); if (WARN_ONCE(should_not_have_added > 0, "disk usage increased without a reservation")) { atomic64_sub(should_not_have_added, &c->sectors_available); added -= should_not_have_added; ret = -1; } if (added > 0) { disk_res->sectors -= added; fs_usage->online_reserved -= added; } preempt_disable(); acc_u64s((u64 *) this_cpu_ptr(c->usage[0]), (u64 *) fs_usage, fs_usage_u64s(c)); preempt_enable(); return ret; } static inline void account_bucket(struct bch_fs_usage *fs_usage, struct bch_dev_usage *dev_usage, enum bch_data_type type, int nr, s64 size) { if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL) fs_usage->hidden += size; dev_usage->buckets[type] += nr; } static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, struct bch_fs_usage *fs_usage, struct bucket_mark old, struct bucket_mark new, bool gc) { struct bch_dev_usage *dev_usage; percpu_rwsem_assert_held(&c->mark_lock); bch2_fs_inconsistent_on(old.data_type && new.data_type && old.data_type != new.data_type, c, "different types of data in same bucket: %s, %s", bch2_data_types[old.data_type], bch2_data_types[new.data_type]); preempt_disable(); dev_usage = this_cpu_ptr(ca->usage[gc]); if (bucket_type(old)) account_bucket(fs_usage, dev_usage, bucket_type(old), -1, -ca->mi.bucket_size); if (bucket_type(new)) account_bucket(fs_usage, dev_usage, bucket_type(new), 1, ca->mi.bucket_size); dev_usage->buckets_alloc += (int) new.owned_by_allocator - (int) old.owned_by_allocator; dev_usage->buckets_ec += (int) new.stripe - (int) old.stripe; dev_usage->buckets_unavailable += is_unavailable_bucket(new) - is_unavailable_bucket(old); dev_usage->sectors[old.data_type] -= old.dirty_sectors; dev_usage->sectors[new.data_type] += new.dirty_sectors; dev_usage->sectors[BCH_DATA_CACHED] += (int) new.cached_sectors - (int) old.cached_sectors; dev_usage->sectors_fragmented += is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca); preempt_enable(); if (!is_available_bucket(old) && is_available_bucket(new)) bch2_wake_allocator(ca); } void bch2_dev_usage_from_buckets(struct bch_fs *c) { struct bch_dev *ca; struct bucket_mark old = { .v.counter = 0 }; struct bch_fs_usage *fs_usage; struct bucket_array *buckets; struct bucket *g; unsigned i; int cpu; percpu_u64_set(&c->usage[0]->hidden, 0); /* * This is only called during startup, before there's any multithreaded * access to c->usage: */ preempt_disable(); fs_usage = this_cpu_ptr(c->usage[0]); preempt_enable(); for_each_member_device(ca, c, i) { for_each_possible_cpu(cpu) memset(per_cpu_ptr(ca->usage[0], cpu), 0, sizeof(*ca->usage[0])); buckets = bucket_array(ca); for_each_bucket(g, buckets) bch2_dev_usage_update(c, ca, fs_usage, old, g->mark, false); } } #define bucket_data_cmpxchg(c, ca, fs_usage, g, new, expr) \ ({ \ struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \ \ bch2_dev_usage_update(c, ca, fs_usage, _old, new, gc); \ _old; \ }) static inline void update_replicas(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct bch_replicas_entry *r, s64 sectors) { int idx = bch2_replicas_entry_idx(c, r); BUG_ON(idx < 0); BUG_ON(!sectors); switch (r->data_type) { case BCH_DATA_BTREE: fs_usage->btree += sectors; break; case BCH_DATA_USER: fs_usage->data += sectors; break; case BCH_DATA_CACHED: fs_usage->cached += sectors; break; } fs_usage->replicas[idx] += sectors; } static inline void update_cached_sectors(struct bch_fs *c, struct bch_fs_usage *fs_usage, unsigned dev, s64 sectors) { struct bch_replicas_padded r; bch2_replicas_entry_cached(&r.e, dev); update_replicas(c, fs_usage, &r.e, sectors); } #define do_mark_fn(fn, c, pos, flags, ...) \ ({ \ int gc, ret = 0; \ \ percpu_rwsem_assert_held(&c->mark_lock); \ \ for (gc = 0; gc < 2 && !ret; gc++) \ if (!gc == !(flags & BCH_BUCKET_MARK_GC) || \ (gc && gc_visited(c, pos))) \ ret = fn(c, __VA_ARGS__, gc); \ ret; \ }) static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark *ret, bool gc) { struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]); struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ BUG_ON(!is_available_bucket(new)); new.owned_by_allocator = true; new.dirty = true; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; new.gen++; })); if (old.cached_sectors) update_cached_sectors(c, fs_usage, ca->dev_idx, -((s64) old.cached_sectors)); if (!gc) *ret = old; return 0; } void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark *old) { do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0, ca, b, old); if (!old->owned_by_allocator && old->cached_sectors) trace_invalidate(ca, bucket_to_sector(ca, b), old->cached_sectors); } static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, bool owned_by_allocator, bool gc) { struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]); struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ new.owned_by_allocator = owned_by_allocator; })); BUG_ON(!gc && !owned_by_allocator && !old.owned_by_allocator); return 0; } void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, bool owned_by_allocator, struct gc_pos pos, unsigned flags) { preempt_disable(); do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags, ca, b, owned_by_allocator); preempt_enable(); } static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k, bool inserting, struct bch_fs_usage *fs_usage, unsigned journal_seq, unsigned flags, bool gc) { struct bkey_alloc_unpacked u; struct bch_dev *ca; struct bucket *g; struct bucket_mark old, m; if (!inserting) return 0; /* * alloc btree is read in by bch2_alloc_read, not gc: */ if (flags & BCH_BUCKET_MARK_GC) return 0; u = bch2_alloc_unpack(bkey_s_c_to_alloc(k).v); ca = bch_dev_bkey_exists(c, k.k->p.inode); g = __bucket(ca, k.k->p.offset, gc); /* * this should currently only be getting called from the bucket * invalidate path: */ BUG_ON(u.dirty_sectors); BUG_ON(u.cached_sectors); BUG_ON(!g->mark.owned_by_allocator); old = bucket_data_cmpxchg(c, ca, fs_usage, g, m, ({ m.gen = u.gen; m.data_type = u.data_type; m.dirty_sectors = u.dirty_sectors; m.cached_sectors = u.cached_sectors; })); g->io_time[READ] = u.read_time; g->io_time[WRITE] = u.write_time; g->oldest_gen = u.oldest_gen; g->gen_valid = 1; if (old.cached_sectors) { update_cached_sectors(c, fs_usage, ca->dev_idx, -old.cached_sectors); trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset), old.cached_sectors); } return 0; } #define checked_add(a, b) \ ({ \ unsigned _res = (unsigned) (a) + (b); \ bool overflow = _res > U16_MAX; \ if (overflow) \ _res = U16_MAX; \ (a) = _res; \ overflow; \ }) static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors, bool gc) { struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; bool overflow; BUG_ON(type != BCH_DATA_SB && type != BCH_DATA_JOURNAL); old = bucket_cmpxchg(g, new, ({ new.dirty = true; new.data_type = type; overflow = checked_add(new.dirty_sectors, sectors); })); bch2_fs_inconsistent_on(overflow, c, "bucket sector count overflow: %u + %u > U16_MAX", old.dirty_sectors, sectors); if (c) bch2_dev_usage_update(c, ca, this_cpu_ptr(c->usage[gc]), old, new, gc); return 0; } void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors, struct gc_pos pos, unsigned flags) { BUG_ON(type != BCH_DATA_SB && type != BCH_DATA_JOURNAL); preempt_disable(); if (likely(c)) { do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags, ca, b, type, sectors); } else { __bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0); } preempt_enable(); } static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p, s64 delta) { if (delta > 0) { /* * marking a new extent, which _will have size_ @delta * * in the bch2_mark_update -> BCH_EXTENT_OVERLAP_MIDDLE * case, we haven't actually created the key we'll be inserting * yet (for the split) - so we don't want to be using * k->size/crc.live_size here: */ return __ptr_disk_sectors(p, delta); } else { BUG_ON(-delta > p.crc.live_size); return (s64) __ptr_disk_sectors(p, p.crc.live_size + delta) - (s64) ptr_disk_sectors(p); } } /* * Checking against gc's position has to be done here, inside the cmpxchg() * loop, to avoid racing with the start of gc clearing all the marks - GC does * that with the gc pos seqlock held. */ static bool bch2_mark_pointer(struct bch_fs *c, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, unsigned journal_seq, unsigned flags, bool gc) { struct bucket_mark old, new; struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); size_t b = PTR_BUCKET_NR(ca, &p.ptr); struct bucket *g = __bucket(ca, b, gc); bool overflow; u64 v; v = atomic64_read(&g->_mark.v); do { new.v.counter = old.v.counter = v; new.dirty = true; /* * Check this after reading bucket mark to guard against * the allocator invalidating a bucket after we've already * checked the gen */ if (gen_after(new.gen, p.ptr.gen)) { BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags)); EBUG_ON(!p.ptr.cached && test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)); return true; } if (!p.ptr.cached) overflow = checked_add(new.dirty_sectors, sectors); else overflow = checked_add(new.cached_sectors, sectors); if (!new.dirty_sectors && !new.cached_sectors) { new.data_type = 0; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } } else { new.data_type = data_type; } if (flags & BCH_BUCKET_MARK_NOATOMIC) { g->_mark = new; break; } } while ((v = atomic64_cmpxchg(&g->_mark.v, old.v.counter, new.v.counter)) != old.v.counter); bch2_fs_inconsistent_on(overflow, c, "bucket sector count overflow: %u + %lli > U16_MAX", !p.ptr.cached ? old.dirty_sectors : old.cached_sectors, sectors); bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); BUG_ON(!gc && bucket_became_unavailable(old, new)); return false; } static int bch2_mark_stripe_ptr(struct bch_fs *c, struct bch_extent_stripe_ptr p, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, s64 sectors, unsigned flags, bool gc) { struct stripe *m; unsigned old, new, nr_data; int blocks_nonempty_delta; s64 parity_sectors; BUG_ON(!sectors); m = genradix_ptr(&c->stripes[gc], p.idx); spin_lock(&c->ec_stripes_heap_lock); if (!m || !m->alive) { spin_unlock(&c->ec_stripes_heap_lock); bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", (u64) p.idx); return -1; } BUG_ON(m->r.e.data_type != data_type); nr_data = m->nr_blocks - m->nr_redundant; parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data); if (sectors < 0) parity_sectors = -parity_sectors; sectors += parity_sectors; old = m->block_sectors[p.block]; m->block_sectors[p.block] += sectors; new = m->block_sectors[p.block]; blocks_nonempty_delta = (int) !!new - (int) !!old; if (blocks_nonempty_delta) { m->blocks_nonempty += blocks_nonempty_delta; if (!gc) bch2_stripes_heap_update(c, m, p.idx); } m->dirty = true; spin_unlock(&c->ec_stripes_heap_lock); update_replicas(c, fs_usage, &m->r.e, sectors); return 0; } static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k, s64 sectors, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, unsigned journal_seq, unsigned flags, bool gc) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_replicas_padded r; s64 dirty_sectors = 0; unsigned i; int ret; r.e.data_type = data_type; r.e.nr_devs = 0; r.e.nr_required = 1; BUG_ON(!sectors); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { s64 disk_sectors = data_type == BCH_DATA_BTREE ? sectors : ptr_disk_sectors_delta(p, sectors); bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type, fs_usage, journal_seq, flags, gc); if (p.ptr.cached) { if (disk_sectors && !stale) update_cached_sectors(c, fs_usage, p.ptr.dev, disk_sectors); } else if (!p.ec_nr) { dirty_sectors += disk_sectors; r.e.devs[r.e.nr_devs++] = p.ptr.dev; } else { for (i = 0; i < p.ec_nr; i++) { ret = bch2_mark_stripe_ptr(c, p.ec[i], data_type, fs_usage, disk_sectors, flags, gc); if (ret) return ret; } r.e.nr_required = 0; } } if (dirty_sectors) update_replicas(c, fs_usage, &r.e, dirty_sectors); return 0; } static void bucket_set_stripe(struct bch_fs *c, const struct bch_stripe *v, bool enabled, struct bch_fs_usage *fs_usage, u64 journal_seq, bool gc) { unsigned i; for (i = 0; i < v->nr_blocks; i++) { const struct bch_extent_ptr *ptr = v->ptrs + i; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); size_t b = PTR_BUCKET_NR(ca, ptr); struct bucket *g = __bucket(ca, b, gc); struct bucket_mark new, old; BUG_ON(ptr_stale(ca, ptr)); old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ new.dirty = true; new.stripe = enabled; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } })); } } static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k, bool inserting, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags, bool gc) { struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); size_t idx = s.k->p.offset; struct stripe *m = genradix_ptr(&c->stripes[gc], idx); unsigned i; spin_lock(&c->ec_stripes_heap_lock); if (!m || (!inserting && !m->alive)) { spin_unlock(&c->ec_stripes_heap_lock); bch_err_ratelimited(c, "error marking nonexistent stripe %zu", idx); return -1; } if (m->alive) bch2_stripes_heap_del(c, m, idx); memset(m, 0, sizeof(*m)); if (inserting) { m->sectors = le16_to_cpu(s.v->sectors); m->algorithm = s.v->algorithm; m->nr_blocks = s.v->nr_blocks; m->nr_redundant = s.v->nr_redundant; memset(&m->r, 0, sizeof(m->r)); m->r.e.data_type = BCH_DATA_USER; m->r.e.nr_devs = s.v->nr_blocks; m->r.e.nr_required = s.v->nr_blocks - s.v->nr_redundant; for (i = 0; i < s.v->nr_blocks; i++) m->r.e.devs[i] = s.v->ptrs[i].dev; /* * XXX: account for stripes somehow here */ #if 0 update_replicas(c, fs_usage, &m->r.e, stripe_sectors); #endif /* gc recalculates these fields: */ if (!(flags & BCH_BUCKET_MARK_GC)) { for (i = 0; i < s.v->nr_blocks; i++) { m->block_sectors[i] = stripe_blockcount_get(s.v, i); m->blocks_nonempty += !!m->block_sectors[i]; } } if (!gc) bch2_stripes_heap_insert(c, m, idx); else m->alive = true; } spin_unlock(&c->ec_stripes_heap_lock); bucket_set_stripe(c, s.v, inserting, fs_usage, 0, gc); return 0; } int bch2_mark_key_locked(struct bch_fs *c, struct bkey_s_c k, bool inserting, s64 sectors, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { bool gc = flags & BCH_BUCKET_MARK_GC; int ret = 0; preempt_disable(); if (!fs_usage || gc) fs_usage = this_cpu_ptr(c->usage[gc]); switch (k.k->type) { case KEY_TYPE_alloc: ret = bch2_mark_alloc(c, k, inserting, fs_usage, journal_seq, flags, gc); break; case KEY_TYPE_btree_ptr: ret = bch2_mark_extent(c, k, inserting ? c->opts.btree_node_size : -c->opts.btree_node_size, BCH_DATA_BTREE, fs_usage, journal_seq, flags, gc); break; case KEY_TYPE_extent: ret = bch2_mark_extent(c, k, sectors, BCH_DATA_USER, fs_usage, journal_seq, flags, gc); break; case KEY_TYPE_stripe: ret = bch2_mark_stripe(c, k, inserting, fs_usage, journal_seq, flags, gc); break; case KEY_TYPE_inode: if (inserting) fs_usage->nr_inodes++; else fs_usage->nr_inodes--; break; case KEY_TYPE_reservation: { unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; sectors *= replicas; replicas = clamp_t(unsigned, replicas, 1, ARRAY_SIZE(fs_usage->persistent_reserved)); fs_usage->reserved += sectors; fs_usage->persistent_reserved[replicas - 1] += sectors; break; } } preempt_enable(); return ret; } int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, bool inserting, s64 sectors, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { int ret; percpu_down_read(&c->mark_lock); ret = bch2_mark_key_locked(c, k, inserting, sectors, fs_usage, journal_seq, flags); percpu_up_read(&c->mark_lock); return ret; } void bch2_mark_update(struct btree_trans *trans, struct btree_insert_entry *insert, struct bch_fs_usage *fs_usage, unsigned flags) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->l[0].b; struct btree_node_iter node_iter = iter->l[0].iter; struct bkey_packed *_k; if (!btree_node_type_needs_gc(iter->btree_id)) return; if (!(trans->flags & BTREE_INSERT_NOMARK)) bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k), true, bpos_min(insert->k->k.p, b->key.k.p).offset - bkey_start_offset(&insert->k->k), fs_usage, trans->journal_res.seq, flags); while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, KEY_TYPE_discard))) { struct bkey unpacked; struct bkey_s_c k; s64 sectors = 0; k = bkey_disassemble(b, _k, &unpacked); if (btree_node_is_extents(b) ? bkey_cmp(insert->k->k.p, bkey_start_pos(k.k)) <= 0 : bkey_cmp(insert->k->k.p, k.k->p)) break; if (btree_node_is_extents(b)) { switch (bch2_extent_overlap(&insert->k->k, k.k)) { case BCH_EXTENT_OVERLAP_ALL: sectors = -((s64) k.k->size); break; case BCH_EXTENT_OVERLAP_BACK: sectors = bkey_start_offset(&insert->k->k) - k.k->p.offset; break; case BCH_EXTENT_OVERLAP_FRONT: sectors = bkey_start_offset(k.k) - insert->k->k.p.offset; break; case BCH_EXTENT_OVERLAP_MIDDLE: sectors = k.k->p.offset - insert->k->k.p.offset; BUG_ON(sectors <= 0); bch2_mark_key_locked(c, k, true, sectors, fs_usage, trans->journal_res.seq, flags); sectors = bkey_start_offset(&insert->k->k) - k.k->p.offset; break; } BUG_ON(sectors >= 0); } bch2_mark_key_locked(c, k, false, sectors, fs_usage, trans->journal_res.seq, flags); bch2_btree_node_iter_advance(&node_iter, b); } } void bch2_trans_fs_usage_apply(struct btree_trans *trans, struct bch_fs_usage *fs_usage) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; static int warned_disk_usage = 0; u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0; char buf[200]; if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res) || warned_disk_usage || xchg(&warned_disk_usage, 1)) return; pr_err("disk usage increased more than %llu sectors reserved", disk_res_sectors); trans_for_each_update_iter(trans, i) { struct btree_iter *iter = i->iter; struct btree *b = iter->l[0].b; struct btree_node_iter node_iter = iter->l[0].iter; struct bkey_packed *_k; pr_err("while inserting"); bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k)); pr_err("%s", buf); pr_err("overlapping with"); node_iter = iter->l[0].iter; while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, KEY_TYPE_discard))) { struct bkey unpacked; struct bkey_s_c k; k = bkey_disassemble(b, _k, &unpacked); if (btree_node_is_extents(b) ? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0 : bkey_cmp(i->k->k.p, k.k->p)) break; bch2_bkey_val_to_text(&PBUF(buf), c, k); pr_err("%s", buf); bch2_btree_node_iter_advance(&node_iter, b); } } } /* Disk reservations: */ static u64 bch2_recalc_sectors_available(struct bch_fs *c) { percpu_u64_set(&c->pcpu->sectors_available, 0); return avail_factor(__bch2_fs_usage_read_short(c).free); } void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) { percpu_down_read(&c->mark_lock); this_cpu_sub(c->usage[0]->online_reserved, res->sectors); percpu_up_read(&c->mark_lock); res->sectors = 0; } #define SECTORS_CACHE 1024 int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, unsigned sectors, int flags) { struct bch_fs_pcpu *pcpu; u64 old, v, get; s64 sectors_available; int ret; percpu_down_read(&c->mark_lock); preempt_disable(); pcpu = this_cpu_ptr(c->pcpu); if (sectors <= pcpu->sectors_available) goto out; v = atomic64_read(&c->sectors_available); do { old = v; get = min((u64) sectors + SECTORS_CACHE, old); if (get < sectors) { preempt_enable(); percpu_up_read(&c->mark_lock); goto recalculate; } } while ((v = atomic64_cmpxchg(&c->sectors_available, old, old - get)) != old); pcpu->sectors_available += get; out: pcpu->sectors_available -= sectors; this_cpu_add(c->usage[0]->online_reserved, sectors); res->sectors += sectors; preempt_enable(); percpu_up_read(&c->mark_lock); return 0; recalculate: percpu_down_write(&c->mark_lock); sectors_available = bch2_recalc_sectors_available(c); if (sectors <= sectors_available || (flags & BCH_DISK_RESERVATION_NOFAIL)) { atomic64_set(&c->sectors_available, max_t(s64, 0, sectors_available - sectors)); this_cpu_add(c->usage[0]->online_reserved, sectors); res->sectors += sectors; ret = 0; } else { atomic64_set(&c->sectors_available, sectors_available); ret = -ENOSPC; } percpu_up_write(&c->mark_lock); return ret; } /* Startup/shutdown: */ static void buckets_free_rcu(struct rcu_head *rcu) { struct bucket_array *buckets = container_of(rcu, struct bucket_array, rcu); kvpfree(buckets, sizeof(struct bucket_array) + buckets->nbuckets * sizeof(struct bucket)); } int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) { struct bucket_array *buckets = NULL, *old_buckets = NULL; unsigned long *buckets_nouse = NULL; unsigned long *buckets_written = NULL; alloc_fifo free[RESERVE_NR]; alloc_fifo free_inc; alloc_heap alloc_heap; copygc_heap copygc_heap; size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, ca->mi.bucket_size / c->opts.btree_node_size); /* XXX: these should be tunable */ size_t reserve_none = max_t(size_t, 1, nbuckets >> 9); size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7); size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12), btree_reserve * 2); bool resize = ca->buckets[0] != NULL, start_copygc = ca->copygc_thread != NULL; int ret = -ENOMEM; unsigned i; memset(&free, 0, sizeof(free)); memset(&free_inc, 0, sizeof(free_inc)); memset(&alloc_heap, 0, sizeof(alloc_heap)); memset(©gc_heap, 0, sizeof(copygc_heap)); if (!(buckets = kvpmalloc(sizeof(struct bucket_array) + nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO)) || !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * sizeof(unsigned long), GFP_KERNEL|__GFP_ZERO)) || !(buckets_written = kvpmalloc(BITS_TO_LONGS(nbuckets) * sizeof(unsigned long), GFP_KERNEL|__GFP_ZERO)) || !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_MOVINGGC], copygc_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) || !init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) || !init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) || !init_heap(©gc_heap, copygc_reserve, GFP_KERNEL)) goto err; buckets->first_bucket = ca->mi.first_bucket; buckets->nbuckets = nbuckets; bch2_copygc_stop(ca); if (resize) { down_write(&c->gc_lock); down_write(&ca->bucket_lock); percpu_down_write(&c->mark_lock); } old_buckets = bucket_array(ca); if (resize) { size_t n = min(buckets->nbuckets, old_buckets->nbuckets); memcpy(buckets->b, old_buckets->b, n * sizeof(struct bucket)); memcpy(buckets_nouse, ca->buckets_nouse, BITS_TO_LONGS(n) * sizeof(unsigned long)); memcpy(buckets_written, ca->buckets_written, BITS_TO_LONGS(n) * sizeof(unsigned long)); } rcu_assign_pointer(ca->buckets[0], buckets); buckets = old_buckets; swap(ca->buckets_nouse, buckets_nouse); swap(ca->buckets_written, buckets_written); if (resize) percpu_up_write(&c->mark_lock); spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) { fifo_move(&free[i], &ca->free[i]); swap(ca->free[i], free[i]); } fifo_move(&free_inc, &ca->free_inc); swap(ca->free_inc, free_inc); spin_unlock(&c->freelist_lock); /* with gc lock held, alloc_heap can't be in use: */ swap(ca->alloc_heap, alloc_heap); /* and we shut down copygc: */ swap(ca->copygc_heap, copygc_heap); nbuckets = ca->mi.nbuckets; if (resize) { up_write(&ca->bucket_lock); up_write(&c->gc_lock); } if (start_copygc && bch2_copygc_start(c, ca)) bch_err(ca, "error restarting copygc thread"); ret = 0; err: free_heap(©gc_heap); free_heap(&alloc_heap); free_fifo(&free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&free[i]); kvpfree(buckets_nouse, BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); kvpfree(buckets_written, BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); if (buckets) call_rcu(&old_buckets->rcu, buckets_free_rcu); return ret; } void bch2_dev_buckets_free(struct bch_dev *ca) { unsigned i; free_heap(&ca->copygc_heap); free_heap(&ca->alloc_heap); free_fifo(&ca->free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&ca->free[i]); kvpfree(ca->buckets_written, BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); kvpfree(ca->buckets_nouse, BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); kvpfree(rcu_dereference_protected(ca->buckets[0], 1), sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket)); free_percpu(ca->usage[0]); } int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) { if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage))) return -ENOMEM; return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; }