// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "journal.h" #include "journal_reclaim.h" #include "replicas.h" #include "super.h" /* * Journal entry pinning - machinery for holding a reference on a given journal * entry, holding it open to ensure it gets replayed during recovery: */ static inline void __journal_pin_add(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); BUG_ON(journal_pin_active(pin)); BUG_ON(!atomic_read(&pin_list->count)); atomic_inc(&pin_list->count); pin->seq = seq; pin->flush = flush_fn; if (flush_fn) list_add(&pin->list, &pin_list->list); else INIT_LIST_HEAD(&pin->list); /* * If the journal is currently full, we might want to call flush_fn * immediately: */ journal_wake(j); } void bch2_journal_pin_add(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); __journal_pin_add(j, seq, pin, flush_fn); spin_unlock(&j->lock); } static inline void __journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { struct journal_entry_pin_list *pin_list; if (!journal_pin_active(pin)) return; pin_list = journal_seq_pin(j, pin->seq); pin->seq = 0; list_del_init(&pin->list); /* * Unpinning a journal entry make make journal_next_bucket() succeed, if * writing a new last_seq will now make another bucket available: */ if (atomic_dec_and_test(&pin_list->count) && pin_list == &fifo_peek_front(&j->pin)) bch2_journal_reclaim_fast(j); } void bch2_journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { spin_lock(&j->lock); __journal_pin_drop(j, pin); spin_unlock(&j->lock); } void bch2_journal_pin_add_if_older(struct journal *j, struct journal_entry_pin *src_pin, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); if (journal_pin_active(src_pin) && (!journal_pin_active(pin) || src_pin->seq < pin->seq)) { __journal_pin_drop(j, pin); __journal_pin_add(j, src_pin->seq, pin, flush_fn); } spin_unlock(&j->lock); } void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) { BUG_ON(journal_pin_active(pin)); wait_event(j->pin_flush_wait, j->flush_in_progress != pin); } /* * Journal reclaim: flush references to open journal entries to reclaim space in * the journal * * May be done by the journal code in the background as needed to free up space * for more journal entries, or as part of doing a clean shutdown, or to migrate * data off of a specific device: */ /** * bch2_journal_reclaim_fast - do the fast part of journal reclaim * * Called from IO submission context, does not block. Cleans up after btree * write completions by advancing the journal pin and each cache's last_idx, * kicking off discards and background reclaim as necessary. */ void bch2_journal_reclaim_fast(struct journal *j) { struct journal_entry_pin_list temp; bool popped = false; lockdep_assert_held(&j->lock); /* * Unpin journal entries whose reference counts reached zero, meaning * all btree nodes got written out */ while (!atomic_read(&fifo_peek_front(&j->pin).count)) { BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list)); BUG_ON(!fifo_pop(&j->pin, temp)); popped = true; } if (popped) journal_wake(j); } static void journal_pin_mark_flushing(struct journal *j, struct journal_entry_pin *pin, u64 seq) { lockdep_assert_held(&j->reclaim_lock); list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); BUG_ON(j->flush_in_progress); j->flush_in_progress = pin; } static void journal_pin_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { pin->flush(j, pin, seq); BUG_ON(j->flush_in_progress != pin); j->flush_in_progress = NULL; wake_up(&j->pin_flush_wait); } static struct journal_entry_pin * journal_get_next_pin(struct journal *j, u64 seq_to_flush, u64 *seq) { struct journal_entry_pin_list *pin_list; struct journal_entry_pin *ret = NULL; /* no need to iterate over empty fifo entries: */ bch2_journal_reclaim_fast(j); fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) if (*seq > seq_to_flush || (ret = list_first_entry_or_null(&pin_list->list, struct journal_entry_pin, list))) break; return ret; } static bool should_discard_bucket(struct journal *j, struct journal_device *ja) { bool ret; spin_lock(&j->lock); ret = ja->nr && (ja->last_idx != ja->cur_idx && ja->bucket_seq[ja->last_idx] < j->last_seq_ondisk); spin_unlock(&j->lock); return ret; } /** * bch2_journal_reclaim_work - free up journal buckets * * Background journal reclaim writes out btree nodes. It should be run * early enough so that we never completely run out of journal buckets. * * High watermarks for triggering background reclaim: * - FIFO has fewer than 512 entries left * - fewer than 25% journal buckets free * * Background reclaim runs until low watermarks are reached: * - FIFO has more than 1024 entries left * - more than 50% journal buckets free * * As long as a reclaim can complete in the time it takes to fill up * 512 journal entries or 25% of all journal buckets, then * journal_next_bucket() should not stall. */ void bch2_journal_reclaim_work(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, journal.reclaim_work); struct journal *j = &c->journal; struct bch_dev *ca; struct journal_entry_pin *pin; u64 seq, seq_to_flush = 0; unsigned iter, bucket_to_flush; unsigned long next_flush; bool reclaim_lock_held = false, need_flush; /* * Advance last_idx to point to the oldest journal entry containing * btree node updates that have not yet been written out */ for_each_rw_member(ca, c, iter) { struct journal_device *ja = &ca->journal; if (!ja->nr) continue; while (should_discard_bucket(j, ja)) { if (!reclaim_lock_held) { /* * ugh: * might be called from __journal_res_get() * under wait_event() - have to go back to * TASK_RUNNING before doing something that * would block, but only if we're doing work: */ __set_current_state(TASK_RUNNING); mutex_lock(&j->reclaim_lock); reclaim_lock_held = true; /* recheck under reclaim_lock: */ continue; } if (ca->mi.discard && bdev_max_discard_sectors(ca->disk_sb.bdev)) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, ja->buckets[ja->last_idx]), ca->mi.bucket_size, GFP_NOIO); spin_lock(&j->lock); ja->last_idx = (ja->last_idx + 1) % ja->nr; spin_unlock(&j->lock); journal_wake(j); } /* * Write out enough btree nodes to free up 50% journal * buckets */ spin_lock(&j->lock); bucket_to_flush = (ja->cur_idx + (ja->nr >> 1)) % ja->nr; seq_to_flush = max_t(u64, seq_to_flush, ja->bucket_seq[bucket_to_flush]); spin_unlock(&j->lock); } /* Also flush if the pin fifo is more than half full */ spin_lock(&j->lock); seq_to_flush = max_t(s64, seq_to_flush, (s64) journal_cur_seq(j) - (j->pin.size >> 1)); /* * If it's been longer than j->reclaim_delay_ms since we last flushed, * make sure to flush at least one journal pin: */ next_flush = j->last_flushed + msecs_to_jiffies(j->reclaim_delay_ms); need_flush = time_after(jiffies, next_flush); while ((pin = journal_get_next_pin(j, need_flush ? U64_MAX : seq_to_flush, &seq))) { if (!reclaim_lock_held) { spin_unlock(&j->lock); __set_current_state(TASK_RUNNING); mutex_lock(&j->reclaim_lock); reclaim_lock_held = true; spin_lock(&j->lock); continue; } journal_pin_mark_flushing(j, pin, seq); spin_unlock(&j->lock); journal_pin_flush(j, pin, seq); need_flush = false; j->last_flushed = jiffies; spin_lock(&j->lock); } spin_unlock(&j->lock); if (reclaim_lock_held) mutex_unlock(&j->reclaim_lock); if (!test_bit(BCH_FS_RO, &c->flags)) queue_delayed_work(system_freezable_wq, &j->reclaim_work, msecs_to_jiffies(j->reclaim_delay_ms)); } static int journal_flush_done(struct journal *j, u64 seq_to_flush, struct journal_entry_pin **pin, u64 *pin_seq) { int ret; *pin = NULL; ret = bch2_journal_error(j); if (ret) return ret; spin_lock(&j->lock); /* * If journal replay hasn't completed, the unreplayed journal entries * hold refs on their corresponding sequence numbers */ ret = (*pin = journal_get_next_pin(j, seq_to_flush, pin_seq)) != NULL || !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || journal_last_seq(j) > seq_to_flush || (fifo_used(&j->pin) == 1 && atomic_read(&fifo_peek_front(&j->pin).count) == 1); if (*pin) journal_pin_mark_flushing(j, *pin, *pin_seq); spin_unlock(&j->lock); return ret; } void bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) { struct journal_entry_pin *pin; u64 pin_seq; if (!test_bit(JOURNAL_STARTED, &j->flags)) return; mutex_lock(&j->reclaim_lock); while (1) { wait_event(j->wait, journal_flush_done(j, seq_to_flush, &pin, &pin_seq)); if (!pin) break; journal_pin_flush(j, pin, pin_seq); } mutex_unlock(&j->reclaim_lock); } int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_entry_pin_list *p; struct bch_devs_list devs; u64 iter, seq = 0; int ret = 0; spin_lock(&j->lock); fifo_for_each_entry_ptr(p, &j->pin, iter) if (dev_idx >= 0 ? bch2_dev_list_has_dev(p->devs, dev_idx) : p->devs.nr < c->opts.metadata_replicas) seq = iter; spin_unlock(&j->lock); bch2_journal_flush_pins(j, seq); ret = bch2_journal_error(j); if (ret) return ret; mutex_lock(&c->replicas_gc_lock); bch2_replicas_gc_start(c, 1 << BCH_DATA_JOURNAL); seq = 0; spin_lock(&j->lock); while (!ret && seq < j->pin.back) { seq = max(seq, journal_last_seq(j)); devs = journal_seq_pin(j, seq)->devs; seq++; spin_unlock(&j->lock); ret = bch2_mark_replicas(c, BCH_DATA_JOURNAL, devs); spin_lock(&j->lock); } spin_unlock(&j->lock); ret = bch2_replicas_gc_end(c, ret); mutex_unlock(&c->replicas_gc_lock); return ret; }