summaryrefslogtreecommitdiff
path: root/crypto/fips140-module.c
blob: cd854fe28845b4ced97ac5ccdfc1148084985f13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2021 Google LLC
 * Author: Ard Biesheuvel <ardb@google.com>
 *
 * This file is the core of fips140.ko, which contains various crypto algorithms
 * that are also built into vmlinux.  At load time, this module overrides the
 * built-in implementations of these algorithms with its implementations.  It
 * also runs self-tests on these algorithms and verifies the integrity of its
 * code and data.  If either of these steps fails, the kernel will panic.
 *
 * This module is intended to be loaded at early boot time in order to meet
 * FIPS 140 and NIAP FPT_TST_EXT.1 requirements.  It shouldn't be used if you
 * don't need to meet these requirements.
 */

#undef __DISABLE_EXPORTS

#include <linux/ctype.h>
#include <linux/module.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <crypto/rng.h>
#include <trace/hooks/fips140.h>

#include "fips140-module.h"
#include "internal.h"

/*
 * FIPS 140-2 prefers the use of HMAC with a public key over a plain hash.
 */
u8 __initdata fips140_integ_hmac_key[] = "The quick brown fox jumps over the lazy dog";

/* this is populated by the build tool */
u8 __initdata fips140_integ_hmac_digest[SHA256_DIGEST_SIZE];

const u32 __initcall_start_marker __section(".initcalls._start");
const u32 __initcall_end_marker __section(".initcalls._end");

const u8 __fips140_text_start __section(".text.._start");
const u8 __fips140_text_end __section(".text.._end");

const u8 __fips140_rodata_start __section(".rodata.._start");
const u8 __fips140_rodata_end __section(".rodata.._end");

/*
 * We need this little detour to prevent Clang from detecting out of bounds
 * accesses to __fips140_text_start and __fips140_rodata_start, which only exist
 * to delineate the section, and so their sizes are not relevant to us.
 */
const u32 *__initcall_start = &__initcall_start_marker;

const u8 *__text_start = &__fips140_text_start;
const u8 *__rodata_start = &__fips140_rodata_start;

/*
 * The list of the crypto API algorithms (by cra_name) that will be unregistered
 * by this module, in preparation for the module registering its own
 * implementation(s) of them.
 *
 * All algorithms that will be declared as FIPS-approved in the module
 * certification must be listed here, to ensure that the non-FIPS-approved
 * implementations of these algorithms in the kernel image aren't used.
 *
 * For every algorithm in this list, the module should contain all the "same"
 * implementations that the kernel image does, including the C implementation as
 * well as any architecture-specific implementations.  This is needed to avoid
 * performance regressions as well as the possibility of an algorithm being
 * unavailable on some CPUs.  E.g., "xcbc(aes)" isn't in this list, as the
 * module doesn't have a C implementation of it (and it won't be FIPS-approved).
 *
 * Due to a quirk in the FIPS requirements, "gcm(aes)" isn't actually able to be
 * FIPS-approved.  However, we otherwise treat it the same as the algorithms
 * that will be FIPS-approved, and therefore it's included in this list.
 *
 * When adding a new algorithm here, make sure to consider whether it needs a
 * self-test added to fips140_selftests[] as well.
 */
static const struct {
	const char *name;
	bool approved;
} fips140_algs_to_replace[] = {
	{"aes", true},

	{"cmac(aes)", true},
	{"ecb(aes)", true},

	{"cbc(aes)", true},
	{"cts(cbc(aes))", true},
	{"ctr(aes)", true},
	{"xts(aes)", true},
	{"gcm(aes)", false},

	{"hmac(sha1)", true},
	{"hmac(sha224)", true},
	{"hmac(sha256)", true},
	{"hmac(sha384)", true},
	{"hmac(sha512)", true},
	{"sha1", true},
	{"sha224", true},
	{"sha256", true},
	{"sha384", true},
	{"sha512", true},

	{"stdrng", true},
	{"jitterentropy_rng", false},
};

static bool __init fips140_should_unregister_alg(struct crypto_alg *alg)
{
	int i;

	/*
	 * All software algorithms are synchronous, hardware algorithms must
	 * be covered by their own FIPS 140 certification.
	 */
	if (alg->cra_flags & CRYPTO_ALG_ASYNC)
		return false;

	for (i = 0; i < ARRAY_SIZE(fips140_algs_to_replace); i++) {
		if (!strcmp(alg->cra_name, fips140_algs_to_replace[i].name))
			return true;
	}
	return false;
}

/*
 * FIPS 140-3 service indicators.  FIPS 140-3 requires that all services
 * "provide an indicator when the service utilises an approved cryptographic
 * algorithm, security function or process in an approved manner".  What this
 * means is very debatable, even with the help of the FIPS 140-3 Implementation
 * Guidance document.  However, it was decided that a function that takes in an
 * algorithm name and returns whether that algorithm is approved or not will
 * meet this requirement.  Note, this relies on some properties of the module:
 *
 *   - The module doesn't distinguish between "services" and "algorithms"; its
 *     services are simply its algorithms.
 *
 *   - The status of an approved algorithm is never non-approved, since (a) the
 *     module doesn't support operating in a non-approved mode, such as a mode
 *     where the self-tests are skipped; (b) there are no cases where the module
 *     supports non-approved settings for approved algorithms, e.g.
 *     non-approved key sizes; and (c) this function isn't available to be
 *     called until the module_init function has completed, so it's guaranteed
 *     that the self-tests and integrity check have already passed.
 *
 *   - The module does support some non-approved algorithms, so a single static
 *     indicator ("return true;") would not be acceptable.
 */
bool fips140_is_approved_service(const char *name)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(fips140_algs_to_replace); i++) {
		if (!strcmp(name, fips140_algs_to_replace[i].name))
			return fips140_algs_to_replace[i].approved;
	}
	return false;
}
EXPORT_SYMBOL_GPL(fips140_is_approved_service);

/*
 * FIPS 140-3 requires that modules provide a "service" that outputs "the name
 * or module identifier and the versioning information that can be correlated
 * with a validation record".  This function meets that requirement.
 *
 * Note: the module also prints this same information to the kernel log when it
 * is loaded.  That might meet the requirement by itself.  However, given the
 * vagueness of what counts as a "service", we provide this function too, just
 * in case the certification lab or CMVP is happier with an explicit function.
 *
 * Note: /sys/modules/fips140/scmversion also provides versioning information
 * about the module.  However that file just shows the bare git commit ID, so it
 * probably isn't sufficient to meet the FIPS requirement, which seems to want
 * the "official" module name and version number used in the FIPS certificate.
 */
const char *fips140_module_version(void)
{
	return FIPS140_MODULE_NAME " " FIPS140_MODULE_VERSION;
}
EXPORT_SYMBOL_GPL(fips140_module_version);

static LIST_HEAD(existing_live_algos);

/*
 * Release a list of algorithms which have been removed from crypto_alg_list.
 *
 * Note that even though the list is a private list, we have to hold
 * crypto_alg_sem while iterating through it because crypto_unregister_alg() may
 * run concurrently (as we haven't taken a reference to the algorithms on the
 * list), and crypto_unregister_alg() will remove the algorithm from whichever
 * list it happens to be on, while holding crypto_alg_sem.  That's okay, since
 * in that case crypto_unregister_alg() will handle the crypto_alg_put().
 */
static void fips140_remove_final(struct list_head *list)
{
	struct crypto_alg *alg;
	struct crypto_alg *n;

	/*
	 * We need to take crypto_alg_sem to safely traverse the list (see
	 * comment above), but we have to drop it when doing each
	 * crypto_alg_put() as that may take crypto_alg_sem again.
	 */
	down_write(&crypto_alg_sem);
	list_for_each_entry_safe(alg, n, list, cra_list) {
		list_del_init(&alg->cra_list);
		up_write(&crypto_alg_sem);

		crypto_alg_put(alg);

		down_write(&crypto_alg_sem);
	}
	up_write(&crypto_alg_sem);
}

static void __init unregister_existing_fips140_algos(void)
{
	struct crypto_alg *alg, *tmp;
	LIST_HEAD(remove_list);
	LIST_HEAD(spawns);

	down_write(&crypto_alg_sem);

	/*
	 * Find all registered algorithms that we care about, and move them to a
	 * private list so that they are no longer exposed via the algo lookup
	 * API. Subsequently, we will unregister them if they are not in active
	 * use. If they are, we can't fully unregister them but we can ensure
	 * that new users won't use them.
	 */
	list_for_each_entry_safe(alg, tmp, &crypto_alg_list, cra_list) {
		if (!fips140_should_unregister_alg(alg))
			continue;
		if (refcount_read(&alg->cra_refcnt) == 1) {
			/*
			 * This algorithm is not currently in use, but there may
			 * be template instances holding references to it via
			 * spawns. So let's tear it down like
			 * crypto_unregister_alg() would, but without releasing
			 * the lock, to prevent races with concurrent TFM
			 * allocations.
			 */
			alg->cra_flags |= CRYPTO_ALG_DEAD;
			list_move(&alg->cra_list, &remove_list);
			crypto_remove_spawns(alg, &spawns, NULL);
		} else {
			/*
			 * This algorithm is live, i.e. it has TFMs allocated,
			 * so we can't fully unregister it.  It's not necessary
			 * to dynamically redirect existing users to the FIPS
			 * code, given that they can't be relying on FIPS
			 * certified crypto in the first place.  However, we do
			 * need to ensure that new users will get the FIPS code.
			 *
			 * In most cases, setting alg->cra_priority to 0
			 * achieves this.  However, that isn't enough for
			 * algorithms like "hmac(sha256)" that need to be
			 * instantiated from a template, since existing
			 * algorithms always take priority over a template being
			 * instantiated.  Therefore, we move the algorithm to
			 * a private list so that algorithm lookups won't find
			 * it anymore.  To further distinguish it from the FIPS
			 * algorithms, we also append "+orig" to its name.
			 */
			pr_info("found already-live algorithm '%s' ('%s')\n",
				alg->cra_name, alg->cra_driver_name);
			alg->cra_priority = 0;
			strlcat(alg->cra_name, "+orig", CRYPTO_MAX_ALG_NAME);
			strlcat(alg->cra_driver_name, "+orig",
				CRYPTO_MAX_ALG_NAME);
			list_move(&alg->cra_list, &existing_live_algos);
		}
	}
	up_write(&crypto_alg_sem);

	fips140_remove_final(&remove_list);
	fips140_remove_final(&spawns);
}

static void __init unapply_text_relocations(void *section, int section_size,
					    const Elf64_Rela *rela, int numrels)
{
	while (numrels--) {
		u32 *place = (u32 *)(section + rela->r_offset);

		BUG_ON(rela->r_offset >= section_size);

		switch (ELF64_R_TYPE(rela->r_info)) {
#ifdef CONFIG_ARM64
		case R_AARCH64_JUMP26:
		case R_AARCH64_CALL26:
			*place &= ~GENMASK(25, 0);
			break;

		case R_AARCH64_ADR_PREL_LO21:
		case R_AARCH64_ADR_PREL_PG_HI21:
		case R_AARCH64_ADR_PREL_PG_HI21_NC:
			*place &= ~(GENMASK(30, 29) | GENMASK(23, 5));
			break;

		case R_AARCH64_ADD_ABS_LO12_NC:
		case R_AARCH64_LDST8_ABS_LO12_NC:
		case R_AARCH64_LDST16_ABS_LO12_NC:
		case R_AARCH64_LDST32_ABS_LO12_NC:
		case R_AARCH64_LDST64_ABS_LO12_NC:
		case R_AARCH64_LDST128_ABS_LO12_NC:
			*place &= ~GENMASK(21, 10);
			break;
		default:
			pr_err("unhandled relocation type %llu\n",
			       ELF64_R_TYPE(rela->r_info));
			BUG();
#else
#error
#endif
		}
		rela++;
	}
}

static void __init unapply_rodata_relocations(void *section, int section_size,
					      const Elf64_Rela *rela, int numrels)
{
	while (numrels--) {
		void *place = section + rela->r_offset;

		BUG_ON(rela->r_offset >= section_size);

		switch (ELF64_R_TYPE(rela->r_info)) {
#ifdef CONFIG_ARM64
		case R_AARCH64_ABS64:
			*(u64 *)place = 0;
			break;
		default:
			pr_err("unhandled relocation type %llu\n",
			       ELF64_R_TYPE(rela->r_info));
			BUG();
#else
#error
#endif
		}
		rela++;
	}
}

extern struct {
	u32	offset;
	u32	count;
} fips140_rela_text, fips140_rela_rodata;

static bool __init check_fips140_module_hmac(void)
{
	struct crypto_shash *tfm = NULL;
	SHASH_DESC_ON_STACK(desc, dontcare);
	u8 digest[SHA256_DIGEST_SIZE];
	void *textcopy, *rodatacopy;
	int textsize, rodatasize;
	bool ok = false;
	int err;

	textsize	= &__fips140_text_end - &__fips140_text_start;
	rodatasize	= &__fips140_rodata_end - &__fips140_rodata_start;

	pr_info("text size  : 0x%x\n", textsize);
	pr_info("rodata size: 0x%x\n", rodatasize);

	textcopy = kmalloc(textsize + rodatasize, GFP_KERNEL);
	if (!textcopy) {
		pr_err("Failed to allocate memory for copy of .text\n");
		goto out;
	}

	rodatacopy = textcopy + textsize;

	memcpy(textcopy, __text_start, textsize);
	memcpy(rodatacopy, __rodata_start, rodatasize);

	// apply the relocations in reverse on the copies of .text  and .rodata
	unapply_text_relocations(textcopy, textsize,
				 offset_to_ptr(&fips140_rela_text.offset),
				 fips140_rela_text.count);

	unapply_rodata_relocations(rodatacopy, rodatasize,
				  offset_to_ptr(&fips140_rela_rodata.offset),
				  fips140_rela_rodata.count);

	fips140_inject_integrity_failure(textcopy);

	tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
	if (IS_ERR(tfm)) {
		pr_err("failed to allocate hmac tfm (%ld)\n", PTR_ERR(tfm));
		tfm = NULL;
		goto out;
	}
	desc->tfm = tfm;

	pr_info("using '%s' for integrity check\n",
		crypto_shash_driver_name(tfm));

	err = crypto_shash_setkey(tfm, fips140_integ_hmac_key,
				  strlen(fips140_integ_hmac_key)) ?:
	      crypto_shash_init(desc) ?:
	      crypto_shash_update(desc, textcopy, textsize) ?:
	      crypto_shash_finup(desc, rodatacopy, rodatasize, digest);

	/* Zeroizing this is important; see the comment below. */
	shash_desc_zero(desc);

	if (err) {
		pr_err("failed to calculate hmac shash (%d)\n", err);
		goto out;
	}

	if (memcmp(digest, fips140_integ_hmac_digest, sizeof(digest))) {
		pr_err("provided_digest  : %*phN\n", (int)sizeof(digest),
		       fips140_integ_hmac_digest);

		pr_err("calculated digest: %*phN\n", (int)sizeof(digest),
		       digest);
		goto out;
	}
	ok = true;
out:
	/*
	 * FIPS 140-3 requires that all "temporary value(s) generated during the
	 * integrity test" be zeroized (ref: FIPS 140-3 IG 9.7.B).  There is no
	 * technical reason to do this given that these values are public
	 * information, but this is the requirement so we follow it.
	 */
	crypto_free_shash(tfm);
	memzero_explicit(digest, sizeof(digest));
	kfree_sensitive(textcopy);
	return ok;
}

static void fips140_sha256(void *p, const u8 *data, unsigned int len, u8 *out,
			   int *hook_inuse)
{
	sha256(data, len, out);
	*hook_inuse = 1;
}

static void fips140_aes_expandkey(void *p, struct crypto_aes_ctx *ctx,
				  const u8 *in_key, unsigned int key_len,
				  int *err)
{
	*err = aes_expandkey(ctx, in_key, key_len);
}

static void fips140_aes_encrypt(void *priv, const struct crypto_aes_ctx *ctx,
				u8 *out, const u8 *in, int *hook_inuse)
{
	aes_encrypt(ctx, out, in);
	*hook_inuse = 1;
}

static void fips140_aes_decrypt(void *priv, const struct crypto_aes_ctx *ctx,
				u8 *out, const u8 *in, int *hook_inuse)
{
	aes_decrypt(ctx, out, in);
	*hook_inuse = 1;
}

static bool update_fips140_library_routines(void)
{
	int ret;

	ret = register_trace_android_vh_sha256(fips140_sha256, NULL) ?:
	      register_trace_android_vh_aes_expandkey(fips140_aes_expandkey, NULL) ?:
	      register_trace_android_vh_aes_encrypt(fips140_aes_encrypt, NULL) ?:
	      register_trace_android_vh_aes_decrypt(fips140_aes_decrypt, NULL);

	return ret == 0;
}

/*
 * Initialize the FIPS 140 module.
 *
 * Note: this routine iterates over the contents of the initcall section, which
 * consists of an array of function pointers that was emitted by the linker
 * rather than the compiler. This means that these function pointers lack the
 * usual CFI stubs that the compiler emits when CFI codegen is enabled. So
 * let's disable CFI locally when handling the initcall array, to avoid
 * surpises.
 */
static int __init __attribute__((__no_sanitize__("cfi")))
fips140_init(void)
{
	const u32 *initcall;

	pr_info("loading " FIPS140_MODULE_NAME " " FIPS140_MODULE_VERSION "\n");
	fips140_init_thread = current;

	unregister_existing_fips140_algos();

	/* iterate over all init routines present in this module and call them */
	for (initcall = __initcall_start + 1;
	     initcall < &__initcall_end_marker;
	     initcall++) {
		int (*init)(void) = offset_to_ptr(initcall);
		int err = init();

		/*
		 * ENODEV is expected from initcalls that only register
		 * algorithms that depend on non-present CPU features.  Besides
		 * that, errors aren't expected here.
		 */
		if (err && err != -ENODEV) {
			pr_err("initcall %ps() failed: %d\n", init, err);
			goto panic;
		}
	}

	if (!fips140_run_selftests())
		goto panic;

	/*
	 * It may seem backward to perform the integrity check last, but this
	 * is intentional: the check itself uses hmac(sha256) which is one of
	 * the algorithms that are replaced with versions from this module, and
	 * the integrity check must use the replacement version.  Also, to be
	 * ready for FIPS 140-3, the integrity check algorithm must have already
	 * been self-tested.
	 */

	if (!check_fips140_module_hmac()) {
		pr_crit("integrity check failed -- giving up!\n");
		goto panic;
	}
	pr_info("integrity check passed\n");

	complete_all(&fips140_tests_done);

	if (!update_fips140_library_routines())
		goto panic;

	if (!fips140_eval_testing_init())
		goto panic;

	pr_info("module successfully loaded\n");
	return 0;

panic:
	panic("FIPS 140 module load failure");
}

module_init(fips140_init);

MODULE_IMPORT_NS(CRYPTO_INTERNAL);
MODULE_LICENSE("GPL v2");

/*
 * Crypto-related helper functions, reproduced here so that they will be
 * covered by the FIPS 140 integrity check.
 *
 * Non-cryptographic helper functions such as memcpy() can be excluded from the
 * FIPS module, but there is ambiguity about other helper functions like
 * __crypto_xor() and crypto_inc() which aren't cryptographic by themselves,
 * but are more closely associated with cryptography than e.g. memcpy(). To
 * err on the side of caution, we include copies of these in the FIPS module.
 */
void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
	while (len >= 8) {
		*(u64 *)dst = *(u64 *)src1 ^  *(u64 *)src2;
		dst += 8;
		src1 += 8;
		src2 += 8;
		len -= 8;
	}

	while (len >= 4) {
		*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
		dst += 4;
		src1 += 4;
		src2 += 4;
		len -= 4;
	}

	while (len >= 2) {
		*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
		dst += 2;
		src1 += 2;
		src2 += 2;
		len -= 2;
	}

	while (len--)
		*dst++ = *src1++ ^ *src2++;
}

void crypto_inc(u8 *a, unsigned int size)
{
	a += size;

	while (size--)
		if (++*--a)
			break;
}