summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNeal Cardwell <ncardwell@google.com>2024-06-24 17:43:23 +0300
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2024-07-05 10:33:49 +0300
commitb4b26d23a1e2bc188cec8592e111d68d83b9031f (patch)
tree92e854f07a5a59fdb197f25173fccd83de8a0aa5
parent91fe991e02c22c450d95b77d7bba588532ed4b03 (diff)
downloadlinux-b4b26d23a1e2bc188cec8592e111d68d83b9031f.tar.xz
tcp: fix tcp_rcv_fastopen_synack() to enter TCP_CA_Loss for failed TFO
[ Upstream commit 5dfe9d273932c647bdc9d664f939af9a5a398cbc ] Testing determined that the recent commit 9e046bb111f1 ("tcp: clear tp->retrans_stamp in tcp_rcv_fastopen_synack()") has a race, and does not always ensure retrans_stamp is 0 after a TFO payload retransmit. If transmit completion for the SYN+data skb happens after the client TCP stack receives the SYNACK (which sometimes happens), then retrans_stamp can erroneously remain non-zero for the lifetime of the connection, causing a premature ETIMEDOUT later. Testing and tracing showed that the buggy scenario is the following somewhat tricky sequence: + Client attempts a TFO handshake. tcp_send_syn_data() sends SYN + TFO cookie + data in a single packet in the syn_data skb. It hands the syn_data skb to tcp_transmit_skb(), which makes a clone. Crucially, it then reuses the same original (non-clone) syn_data skb, transforming it by advancing the seq by one byte and removing the FIN bit, and enques the resulting payload-only skb in the sk->tcp_rtx_queue. + Client sets retrans_stamp to the start time of the three-way handshake. + Cookie mismatches or server has TFO disabled, and server only ACKs SYN. + tcp_ack() sees SYN is acked, tcp_clean_rtx_queue() clears retrans_stamp. + Since the client SYN was acked but not the payload, the TFO failure code path in tcp_rcv_fastopen_synack() tries to retransmit the payload skb. However, in some cases the transmit completion for the clone of the syn_data (which had SYN + TFO cookie + data) hasn't happened. In those cases, skb_still_in_host_queue() returns true for the retransmitted TFO payload, because the clone of the syn_data skb has not had its tx completetion. + Because skb_still_in_host_queue() finds skb_fclone_busy() is true, it sets the TSQ_THROTTLED bit and the retransmit does not happen in the tcp_rcv_fastopen_synack() call chain. + The tcp_rcv_fastopen_synack() code next implicitly assumes the retransmit process is finished, and sets retrans_stamp to 0 to clear it, but this is later overwritten (see below). + Later, upon tx completion, tcp_tsq_write() calls tcp_xmit_retransmit_queue(), which puts the retransmit in flight and sets retrans_stamp to a non-zero value. + The client receives an ACK for the retransmitted TFO payload data. + Since we're in CA_Open and there are no dupacks/SACKs/DSACKs/ECN to make tcp_ack_is_dubious() true and make us call tcp_fastretrans_alert() and reach a code path that clears retrans_stamp, retrans_stamp stays nonzero. + Later, if there is a TLP, RTO, RTO sequence, then the connection will suffer an early ETIMEDOUT due to the erroneously ancient retrans_stamp. The fix: this commit refactors the code to have tcp_rcv_fastopen_synack() retransmit by reusing the relevant parts of tcp_simple_retransmit() that enter CA_Loss (without changing cwnd) and call tcp_xmit_retransmit_queue(). We have tcp_simple_retransmit() and tcp_rcv_fastopen_synack() share code in this way because in both cases we get a packet indicating non-congestion loss (MTU reduction or TFO failure) and thus in both cases we want to retransmit as many packets as cwnd allows, without reducing cwnd. And given that retransmits will set retrans_stamp to a non-zero value (and may do so in a later calling context due to TSQ), we also want to enter CA_Loss so that we track when all retransmitted packets are ACked and clear retrans_stamp when that happens (to ensure later recurring RTOs are using the correct retrans_stamp and don't declare ETIMEDOUT prematurely). Fixes: 9e046bb111f1 ("tcp: clear tp->retrans_stamp in tcp_rcv_fastopen_synack()") Fixes: a7abf3cd76e1 ("tcp: consider using standard rtx logic in tcp_rcv_fastopen_synack()") Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Link: https://patch.msgid.link/20240624144323.2371403-1-ncardwell.sw@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-rw-r--r--net/ipv4/tcp_input.c38
1 files changed, 27 insertions, 11 deletions
diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
index 64707a5227f5..6743b6bfbc9c 100644
--- a/net/ipv4/tcp_input.c
+++ b/net/ipv4/tcp_input.c
@@ -2759,13 +2759,37 @@ static void tcp_mtup_probe_success(struct sock *sk)
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
}
+/* Sometimes we deduce that packets have been dropped due to reasons other than
+ * congestion, like path MTU reductions or failed client TFO attempts. In these
+ * cases we call this function to retransmit as many packets as cwnd allows,
+ * without reducing cwnd. Given that retransmits will set retrans_stamp to a
+ * non-zero value (and may do so in a later calling context due to TSQ), we
+ * also enter CA_Loss so that we track when all retransmitted packets are ACKed
+ * and clear retrans_stamp when that happens (to ensure later recurring RTOs
+ * are using the correct retrans_stamp and don't declare ETIMEDOUT
+ * prematurely).
+ */
+static void tcp_non_congestion_loss_retransmit(struct sock *sk)
+{
+ const struct inet_connection_sock *icsk = inet_csk(sk);
+ struct tcp_sock *tp = tcp_sk(sk);
+
+ if (icsk->icsk_ca_state != TCP_CA_Loss) {
+ tp->high_seq = tp->snd_nxt;
+ tp->snd_ssthresh = tcp_current_ssthresh(sk);
+ tp->prior_ssthresh = 0;
+ tp->undo_marker = 0;
+ tcp_set_ca_state(sk, TCP_CA_Loss);
+ }
+ tcp_xmit_retransmit_queue(sk);
+}
+
/* Do a simple retransmit without using the backoff mechanisms in
* tcp_timer. This is used for path mtu discovery.
* The socket is already locked here.
*/
void tcp_simple_retransmit(struct sock *sk)
{
- const struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int mss;
@@ -2805,14 +2829,7 @@ void tcp_simple_retransmit(struct sock *sk)
* in network, but units changed and effective
* cwnd/ssthresh really reduced now.
*/
- if (icsk->icsk_ca_state != TCP_CA_Loss) {
- tp->high_seq = tp->snd_nxt;
- tp->snd_ssthresh = tcp_current_ssthresh(sk);
- tp->prior_ssthresh = 0;
- tp->undo_marker = 0;
- tcp_set_ca_state(sk, TCP_CA_Loss);
- }
- tcp_xmit_retransmit_queue(sk);
+ tcp_non_congestion_loss_retransmit(sk);
}
EXPORT_SYMBOL(tcp_simple_retransmit);
@@ -6175,8 +6192,7 @@ static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
skb_rbtree_walk_from(data)
tcp_mark_skb_lost(sk, data);
- tcp_xmit_retransmit_queue(sk);
- tp->retrans_stamp = 0;
+ tcp_non_congestion_loss_retransmit(sk);
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENACTIVEFAIL);
return true;