summaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
authorJosh Poimboeuf <jpoimboe@kernel.org>2022-06-15 00:16:15 +0300
committerBorislav Petkov <bp@suse.de>2022-06-27 11:34:00 +0300
commit9756bba28470722dacb79ffce554336dd1f6a6cd (patch)
tree2de4396bfa550c400fe8380e435fb28169733cd9 /arch/x86
parentbea7e31a5caccb6fe8ed989c065072354f0ecb52 (diff)
downloadlinux-9756bba28470722dacb79ffce554336dd1f6a6cd.tar.xz
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a bunch of comments to attempt to document the current state of tribal knowledge about RSB attacks and what exactly is being mitigated. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de>
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/include/asm/cpufeatures.h2
-rw-r--r--arch/x86/kernel/cpu/bugs.c63
-rw-r--r--arch/x86/kvm/vmx/vmenter.S6
3 files changed, 62 insertions, 9 deletions
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h
index 09dce77f4848..d143f018eda1 100644
--- a/arch/x86/include/asm/cpufeatures.h
+++ b/arch/x86/include/asm/cpufeatures.h
@@ -204,7 +204,7 @@
#define X86_FEATURE_XCOMPACTED ( 7*32+10) /* "" Use compacted XSTATE (XSAVES or XSAVEC) */
#define X86_FEATURE_PTI ( 7*32+11) /* Kernel Page Table Isolation enabled */
#define X86_FEATURE_KERNEL_IBRS ( 7*32+12) /* "" Set/clear IBRS on kernel entry/exit */
-/* FREE! ( 7*32+13) */
+#define X86_FEATURE_RSB_VMEXIT ( 7*32+13) /* "" Fill RSB on VM-Exit */
#define X86_FEATURE_INTEL_PPIN ( 7*32+14) /* Intel Processor Inventory Number */
#define X86_FEATURE_CDP_L2 ( 7*32+15) /* Code and Data Prioritization L2 */
#define X86_FEATURE_MSR_SPEC_CTRL ( 7*32+16) /* "" MSR SPEC_CTRL is implemented */
diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c
index 31ccb7852afd..fcbd072a5e36 100644
--- a/arch/x86/kernel/cpu/bugs.c
+++ b/arch/x86/kernel/cpu/bugs.c
@@ -1401,17 +1401,70 @@ static void __init spectre_v2_select_mitigation(void)
pr_info("%s\n", spectre_v2_strings[mode]);
/*
- * If spectre v2 protection has been enabled, unconditionally fill
- * RSB during a context switch; this protects against two independent
- * issues:
+ * If Spectre v2 protection has been enabled, fill the RSB during a
+ * context switch. In general there are two types of RSB attacks
+ * across context switches, for which the CALLs/RETs may be unbalanced.
*
- * - RSB underflow (and switch to BTB) on Skylake+
- * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
+ * 1) RSB underflow
+ *
+ * Some Intel parts have "bottomless RSB". When the RSB is empty,
+ * speculated return targets may come from the branch predictor,
+ * which could have a user-poisoned BTB or BHB entry.
+ *
+ * AMD has it even worse: *all* returns are speculated from the BTB,
+ * regardless of the state of the RSB.
+ *
+ * When IBRS or eIBRS is enabled, the "user -> kernel" attack
+ * scenario is mitigated by the IBRS branch prediction isolation
+ * properties, so the RSB buffer filling wouldn't be necessary to
+ * protect against this type of attack.
+ *
+ * The "user -> user" attack scenario is mitigated by RSB filling.
+ *
+ * 2) Poisoned RSB entry
+ *
+ * If the 'next' in-kernel return stack is shorter than 'prev',
+ * 'next' could be tricked into speculating with a user-poisoned RSB
+ * entry.
+ *
+ * The "user -> kernel" attack scenario is mitigated by SMEP and
+ * eIBRS.
+ *
+ * The "user -> user" scenario, also known as SpectreBHB, requires
+ * RSB clearing.
+ *
+ * So to mitigate all cases, unconditionally fill RSB on context
+ * switches.
+ *
+ * FIXME: Is this pointless for retbleed-affected AMD?
*/
setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
/*
+ * Similar to context switches, there are two types of RSB attacks
+ * after vmexit:
+ *
+ * 1) RSB underflow
+ *
+ * 2) Poisoned RSB entry
+ *
+ * When retpoline is enabled, both are mitigated by filling/clearing
+ * the RSB.
+ *
+ * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
+ * prediction isolation protections, RSB still needs to be cleared
+ * because of #2. Note that SMEP provides no protection here, unlike
+ * user-space-poisoned RSB entries.
+ *
+ * eIBRS, on the other hand, has RSB-poisoning protections, so it
+ * doesn't need RSB clearing after vmexit.
+ */
+ if (boot_cpu_has(X86_FEATURE_RETPOLINE) ||
+ boot_cpu_has(X86_FEATURE_KERNEL_IBRS))
+ setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
+
+ /*
* Retpoline protects the kernel, but doesn't protect firmware. IBRS
* and Enhanced IBRS protect firmware too, so enable IBRS around
* firmware calls only when IBRS / Enhanced IBRS aren't otherwise
diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S
index 8641ea74a307..4c743fa98a1f 100644
--- a/arch/x86/kvm/vmx/vmenter.S
+++ b/arch/x86/kvm/vmx/vmenter.S
@@ -194,15 +194,15 @@ SYM_INNER_LABEL(vmx_vmexit, SYM_L_GLOBAL)
* IMPORTANT: RSB filling and SPEC_CTRL handling must be done before
* the first unbalanced RET after vmexit!
*
- * For retpoline, RSB filling is needed to prevent poisoned RSB entries
- * and (in some cases) RSB underflow.
+ * For retpoline or IBRS, RSB filling is needed to prevent poisoned RSB
+ * entries and (in some cases) RSB underflow.
*
* eIBRS has its own protection against poisoned RSB, so it doesn't
* need the RSB filling sequence. But it does need to be enabled
* before the first unbalanced RET.
*/
- FILL_RETURN_BUFFER %_ASM_CX, RSB_CLEAR_LOOPS, X86_FEATURE_RETPOLINE
+ FILL_RETURN_BUFFER %_ASM_CX, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_VMEXIT
pop %_ASM_ARG2 /* @flags */
pop %_ASM_ARG1 /* @vmx */