summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/filesystems/fsverity.rst192
-rw-r--r--fs/verity/Kconfig16
-rw-r--r--fs/verity/enable.c2
-rw-r--r--fs/verity/open.c8
-rw-r--r--fs/verity/read_metadata.c4
-rw-r--r--fs/verity/signature.c8
6 files changed, 149 insertions, 81 deletions
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
index ede672dedf11..cb845e8e5435 100644
--- a/Documentation/filesystems/fsverity.rst
+++ b/Documentation/filesystems/fsverity.rst
@@ -38,20 +38,14 @@ fail at runtime.
Use cases
=========
-By itself, the base fs-verity feature only provides integrity
-protection, i.e. detection of accidental (non-malicious) corruption.
+By itself, fs-verity only provides integrity protection, i.e.
+detection of accidental (non-malicious) corruption.
However, because fs-verity makes retrieving the file hash extremely
efficient, it's primarily meant to be used as a tool to support
authentication (detection of malicious modifications) or auditing
(logging file hashes before use).
-Trusted userspace code (e.g. operating system code running on a
-read-only partition that is itself authenticated by dm-verity) can
-authenticate the contents of an fs-verity file by using the
-`FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
-digital signature of it.
-
A standard file hash could be used instead of fs-verity. However,
this is inefficient if the file is large and only a small portion may
be accessed. This is often the case for Android application package
@@ -69,24 +63,31 @@ still be used on read-only filesystems. fs-verity is for files that
must live on a read-write filesystem because they are independently
updated and potentially user-installed, so dm-verity cannot be used.
-The base fs-verity feature is a hashing mechanism only; actually
-authenticating the files may be done by:
-
-* Userspace-only
-
-* Builtin signature verification + userspace policy
-
- fs-verity optionally supports a simple signature verification
- mechanism where users can configure the kernel to require that
- all fs-verity files be signed by a key loaded into a keyring;
- see `Built-in signature verification`_.
-
-* Integrity Measurement Architecture (IMA)
-
- IMA supports including fs-verity file digests and signatures in the
- IMA measurement list and verifying fs-verity based file signatures
- stored as security.ima xattrs, based on policy.
-
+fs-verity does not mandate a particular scheme for authenticating its
+file hashes. (Similarly, dm-verity does not mandate a particular
+scheme for authenticating its block device root hashes.) Options for
+authenticating fs-verity file hashes include:
+
+- Trusted userspace code. Often, the userspace code that accesses
+ files can be trusted to authenticate them. Consider e.g. an
+ application that wants to authenticate data files before using them,
+ or an application loader that is part of the operating system (which
+ is already authenticated in a different way, such as by being loaded
+ from a read-only partition that uses dm-verity) and that wants to
+ authenticate applications before loading them. In these cases, this
+ trusted userspace code can authenticate a file's contents by
+ retrieving its fs-verity digest using `FS_IOC_MEASURE_VERITY`_, then
+ verifying a signature of it using any userspace cryptographic
+ library that supports digital signatures.
+
+- Integrity Measurement Architecture (IMA). IMA supports fs-verity
+ file digests as an alternative to its traditional full file digests.
+ "IMA appraisal" enforces that files contain a valid, matching
+ signature in their "security.ima" extended attribute, as controlled
+ by the IMA policy. For more information, see the IMA documentation.
+
+- Trusted userspace code in combination with `Built-in signature
+ verification`_. This approach should be used only with great care.
User API
========
@@ -111,8 +112,7 @@ follows::
};
This structure contains the parameters of the Merkle tree to build for
-the file, and optionally contains a signature. It must be initialized
-as follows:
+the file. It must be initialized as follows:
- ``version`` must be 1.
- ``hash_algorithm`` must be the identifier for the hash algorithm to
@@ -129,12 +129,14 @@ as follows:
file or device. Currently the maximum salt size is 32 bytes.
- ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
provided.
-- ``sig_size`` is the size of the signature in bytes, or 0 if no
- signature is provided. Currently the signature is (somewhat
- arbitrarily) limited to 16128 bytes. See `Built-in signature
- verification`_ for more information.
-- ``sig_ptr`` is the pointer to the signature, or NULL if no
- signature is provided.
+- ``sig_size`` is the size of the builtin signature in bytes, or 0 if no
+ builtin signature is provided. Currently the builtin signature is
+ (somewhat arbitrarily) limited to 16128 bytes.
+- ``sig_ptr`` is the pointer to the builtin signature, or NULL if no
+ builtin signature is provided. A builtin signature is only needed
+ if the `Built-in signature verification`_ feature is being used. It
+ is not needed for IMA appraisal, and it is not needed if the file
+ signature is being handled entirely in userspace.
- All reserved fields must be zeroed.
FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
@@ -158,7 +160,7 @@ fatal signal), no changes are made to the file.
FS_IOC_ENABLE_VERITY can fail with the following errors:
- ``EACCES``: the process does not have write access to the file
-- ``EBADMSG``: the signature is malformed
+- ``EBADMSG``: the builtin signature is malformed
- ``EBUSY``: this ioctl is already running on the file
- ``EEXIST``: the file already has verity enabled
- ``EFAULT``: the caller provided inaccessible memory
@@ -168,10 +170,10 @@ FS_IOC_ENABLE_VERITY can fail with the following errors:
reserved bits are set; or the file descriptor refers to neither a
regular file nor a directory.
- ``EISDIR``: the file descriptor refers to a directory
-- ``EKEYREJECTED``: the signature doesn't match the file
-- ``EMSGSIZE``: the salt or signature is too long
-- ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
- needed to verify the signature
+- ``EKEYREJECTED``: the builtin signature doesn't match the file
+- ``EMSGSIZE``: the salt or builtin signature is too long
+- ``ENOKEY``: the ".fs-verity" keyring doesn't contain the certificate
+ needed to verify the builtin signature
- ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
available in the kernel's crypto API as currently configured (e.g.
for SHA-512, missing CONFIG_CRYPTO_SHA512).
@@ -180,8 +182,8 @@ FS_IOC_ENABLE_VERITY can fail with the following errors:
support; or the filesystem superblock has not had the 'verity'
feature enabled on it; or the filesystem does not support fs-verity
on this file. (See `Filesystem support`_.)
-- ``EPERM``: the file is append-only; or, a signature is required and
- one was not provided.
+- ``EPERM``: the file is append-only; or, a builtin signature is
+ required and one was not provided.
- ``EROFS``: the filesystem is read-only
- ``ETXTBSY``: someone has the file open for writing. This can be the
caller's file descriptor, another open file descriptor, or the file
@@ -270,9 +272,9 @@ This ioctl takes in a pointer to the following structure::
- ``FS_VERITY_METADATA_TYPE_DESCRIPTOR`` reads the fs-verity
descriptor. See `fs-verity descriptor`_.
-- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the signature which was
- passed to FS_IOC_ENABLE_VERITY, if any. See `Built-in signature
- verification`_.
+- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the builtin signature
+ which was passed to FS_IOC_ENABLE_VERITY, if any. See `Built-in
+ signature verification`_.
The semantics are similar to those of ``pread()``. ``offset``
specifies the offset in bytes into the metadata item to read from, and
@@ -299,7 +301,7 @@ FS_IOC_READ_VERITY_METADATA can fail with the following errors:
overflowed
- ``ENODATA``: the file is not a verity file, or
FS_VERITY_METADATA_TYPE_SIGNATURE was requested but the file doesn't
- have a built-in signature
+ have a builtin signature
- ``ENOTTY``: this type of filesystem does not implement fs-verity, or
this ioctl is not yet implemented on it
- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
@@ -347,8 +349,8 @@ non-verity one, with the following exceptions:
with EIO (for read()) or SIGBUS (for mmap() reads).
- If the sysctl "fs.verity.require_signatures" is set to 1 and the
- file is not signed by a key in the fs-verity keyring, then opening
- the file will fail. See `Built-in signature verification`_.
+ file is not signed by a key in the ".fs-verity" keyring, then
+ opening the file will fail. See `Built-in signature verification`_.
Direct access to the Merkle tree is not supported. Therefore, if a
verity file is copied, or is backed up and restored, then it will lose
@@ -433,20 +435,25 @@ root hash as well as other fields such as the file size::
Built-in signature verification
===============================
-With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
-a portion of an authentication policy (see `Use cases`_) in the
-kernel. Specifically, it adds support for:
+CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y adds supports for in-kernel
+verification of fs-verity builtin signatures.
+
+**IMPORTANT**! Please take great care before using this feature.
+It is not the only way to do signatures with fs-verity, and the
+alternatives (such as userspace signature verification, and IMA
+appraisal) can be much better. It's also easy to fall into a trap
+of thinking this feature solves more problems than it actually does.
+
+Enabling this option adds the following:
-1. At fs-verity module initialization time, a keyring ".fs-verity" is
- created. The root user can add trusted X.509 certificates to this
- keyring using the add_key() system call, then (when done)
- optionally use keyctl_restrict_keyring() to prevent additional
- certificates from being added.
+1. At boot time, the kernel creates a keyring named ".fs-verity". The
+ root user can add trusted X.509 certificates to this keyring using
+ the add_key() system call.
2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
detached signature in DER format of the file's fs-verity digest.
- On success, this signature is persisted alongside the Merkle tree.
- Then, any time the file is opened, the kernel will verify the
+ On success, the ioctl persists the signature alongside the Merkle
+ tree. Then, any time the file is opened, the kernel verifies the
file's actual digest against this signature, using the certificates
in the ".fs-verity" keyring.
@@ -454,8 +461,8 @@ kernel. Specifically, it adds support for:
When set to 1, the kernel requires that all verity files have a
correctly signed digest as described in (2).
-fs-verity file digests must be signed in the following format, which
-is similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
+The data that the signature as described in (2) must be a signature of
+is the fs-verity file digest in the following format::
struct fsverity_formatted_digest {
char magic[8]; /* must be "FSVerity" */
@@ -464,13 +471,66 @@ is similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
__u8 digest[];
};
-fs-verity's built-in signature verification support is meant as a
-relatively simple mechanism that can be used to provide some level of
-authenticity protection for verity files, as an alternative to doing
-the signature verification in userspace or using IMA-appraisal.
-However, with this mechanism, userspace programs still need to check
-that the verity bit is set, and there is no protection against verity
-files being swapped around.
+That's it. It should be emphasized again that fs-verity builtin
+signatures are not the only way to do signatures with fs-verity. See
+`Use cases`_ for an overview of ways in which fs-verity can be used.
+fs-verity builtin signatures have some major limitations that should
+be carefully considered before using them:
+
+- Builtin signature verification does *not* make the kernel enforce
+ that any files actually have fs-verity enabled. Thus, it is not a
+ complete authentication policy. Currently, if it is used, the only
+ way to complete the authentication policy is for trusted userspace
+ code to explicitly check whether files have fs-verity enabled with a
+ signature before they are accessed. (With
+ fs.verity.require_signatures=1, just checking whether fs-verity is
+ enabled suffices.) But, in this case the trusted userspace code
+ could just store the signature alongside the file and verify it
+ itself using a cryptographic library, instead of using this feature.
+
+- A file's builtin signature can only be set at the same time that
+ fs-verity is being enabled on the file. Changing or deleting the
+ builtin signature later requires re-creating the file.
+
+- Builtin signature verification uses the same set of public keys for
+ all fs-verity enabled files on the system. Different keys cannot be
+ trusted for different files; each key is all or nothing.
+
+- The sysctl fs.verity.require_signatures applies system-wide.
+ Setting it to 1 only works when all users of fs-verity on the system
+ agree that it should be set to 1. This limitation can prevent
+ fs-verity from being used in cases where it would be helpful.
+
+- Builtin signature verification can only use signature algorithms
+ that are supported by the kernel. For example, the kernel does not
+ yet support Ed25519, even though this is often the signature
+ algorithm that is recommended for new cryptographic designs.
+
+- fs-verity builtin signatures are in PKCS#7 format, and the public
+ keys are in X.509 format. These formats are commonly used,
+ including by some other kernel features (which is why the fs-verity
+ builtin signatures use them), and are very feature rich.
+ Unfortunately, history has shown that code that parses and handles
+ these formats (which are from the 1990s and are based on ASN.1)
+ often has vulnerabilities as a result of their complexity. This
+ complexity is not inherent to the cryptography itself.
+
+ fs-verity users who do not need advanced features of X.509 and
+ PKCS#7 should strongly consider using simpler formats, such as plain
+ Ed25519 keys and signatures, and verifying signatures in userspace.
+
+ fs-verity users who choose to use X.509 and PKCS#7 anyway should
+ still consider that verifying those signatures in userspace is more
+ flexible (for other reasons mentioned earlier in this document) and
+ eliminates the need to enable CONFIG_FS_VERITY_BUILTIN_SIGNATURES
+ and its associated increase in kernel attack surface. In some cases
+ it can even be necessary, since advanced X.509 and PKCS#7 features
+ do not always work as intended with the kernel. For example, the
+ kernel does not check X.509 certificate validity times.
+
+ Note: IMA appraisal, which supports fs-verity, does not use PKCS#7
+ for its signatures, so it partially avoids the issues discussed
+ here. IMA appraisal does use X.509.
Filesystem support
==================
diff --git a/fs/verity/Kconfig b/fs/verity/Kconfig
index a7ffd718f171..e1036e535352 100644
--- a/fs/verity/Kconfig
+++ b/fs/verity/Kconfig
@@ -39,14 +39,14 @@ config FS_VERITY_BUILTIN_SIGNATURES
depends on FS_VERITY
select SYSTEM_DATA_VERIFICATION
help
- Support verifying signatures of verity files against the X.509
- certificates that have been loaded into the ".fs-verity"
- kernel keyring.
+ This option adds support for in-kernel verification of
+ fs-verity builtin signatures.
- This is meant as a relatively simple mechanism that can be
- used to provide an authenticity guarantee for verity files, as
- an alternative to IMA appraisal. Userspace programs still
- need to check that the verity bit is set in order to get an
- authenticity guarantee.
+ Please take great care before using this feature. It is not
+ the only way to do signatures with fs-verity, and the
+ alternatives (such as userspace signature verification, and
+ IMA appraisal) can be much better. For details about the
+ limitations of this feature, see
+ Documentation/filesystems/fsverity.rst.
If unsure, say N.
diff --git a/fs/verity/enable.c b/fs/verity/enable.c
index bd86b25ac084..c284f46d1b53 100644
--- a/fs/verity/enable.c
+++ b/fs/verity/enable.c
@@ -208,7 +208,7 @@ static int enable_verity(struct file *filp,
}
desc->salt_size = arg->salt_size;
- /* Get the signature if the user provided one */
+ /* Get the builtin signature if the user provided one */
if (arg->sig_size &&
copy_from_user(desc->signature, u64_to_user_ptr(arg->sig_ptr),
arg->sig_size)) {
diff --git a/fs/verity/open.c b/fs/verity/open.c
index f0383bef86ea..1db5106a9c38 100644
--- a/fs/verity/open.c
+++ b/fs/verity/open.c
@@ -156,7 +156,7 @@ out_err:
/*
* Compute the file digest by hashing the fsverity_descriptor excluding the
- * signature and with the sig_size field set to 0.
+ * builtin signature and with the sig_size field set to 0.
*/
static int compute_file_digest(const struct fsverity_hash_alg *hash_alg,
struct fsverity_descriptor *desc,
@@ -174,7 +174,7 @@ static int compute_file_digest(const struct fsverity_hash_alg *hash_alg,
/*
* Create a new fsverity_info from the given fsverity_descriptor (with optional
- * appended signature), and check the signature if present. The
+ * appended builtin signature), and check the signature if present. The
* fsverity_descriptor must have already undergone basic validation.
*/
struct fsverity_info *fsverity_create_info(const struct inode *inode,
@@ -319,8 +319,8 @@ static bool validate_fsverity_descriptor(struct inode *inode,
}
/*
- * Read the inode's fsverity_descriptor (with optional appended signature) from
- * the filesystem, and do basic validation of it.
+ * Read the inode's fsverity_descriptor (with optional appended builtin
+ * signature) from the filesystem, and do basic validation of it.
*/
int fsverity_get_descriptor(struct inode *inode,
struct fsverity_descriptor **desc_ret)
diff --git a/fs/verity/read_metadata.c b/fs/verity/read_metadata.c
index 2aefc5565152..f58432772d9e 100644
--- a/fs/verity/read_metadata.c
+++ b/fs/verity/read_metadata.c
@@ -105,7 +105,7 @@ static int fsverity_read_descriptor(struct inode *inode,
if (res)
return res;
- /* don't include the signature */
+ /* don't include the builtin signature */
desc_size = offsetof(struct fsverity_descriptor, signature);
desc->sig_size = 0;
@@ -131,7 +131,7 @@ static int fsverity_read_signature(struct inode *inode,
}
/*
- * Include only the signature. Note that fsverity_get_descriptor()
+ * Include only the builtin signature. fsverity_get_descriptor()
* already verified that sig_size is in-bounds.
*/
res = fsverity_read_buffer(buf, offset, length, desc->signature,
diff --git a/fs/verity/signature.c b/fs/verity/signature.c
index b8c51ad40d3a..72034bc71c9d 100644
--- a/fs/verity/signature.c
+++ b/fs/verity/signature.c
@@ -5,6 +5,14 @@
* Copyright 2019 Google LLC
*/
+/*
+ * This file implements verification of fs-verity builtin signatures. Please
+ * take great care before using this feature. It is not the only way to do
+ * signatures with fs-verity, and the alternatives (such as userspace signature
+ * verification, and IMA appraisal) can be much better. For details about the
+ * limitations of this feature, see Documentation/filesystems/fsverity.rst.
+ */
+
#include "fsverity_private.h"
#include <linux/cred.h>