summaryrefslogtreecommitdiff
path: root/security/keys/trusted-keys/trusted_dcp.c
blob: b5f81a05be3676457fee411b753ac64588eaf4de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2021 sigma star gmbh
 */

#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/gcm.h>
#include <crypto/skcipher.h>
#include <keys/trusted-type.h>
#include <linux/key-type.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <soc/fsl/dcp.h>

#define DCP_BLOB_VERSION 1
#define DCP_BLOB_AUTHLEN 16

/**
 * DOC: dcp blob format
 *
 * The Data Co-Processor (DCP) provides hardware-bound AES keys using its
 * AES encryption engine only. It does not provide direct key sealing/unsealing.
 * To make DCP hardware encryption keys usable as trust source, we define
 * our own custom format that uses a hardware-bound key to secure the sealing
 * key stored in the key blob.
 *
 * Whenever a new trusted key using DCP is generated, we generate a random 128-bit
 * blob encryption key (BEK) and 128-bit nonce. The BEK and nonce are used to
 * encrypt the trusted key payload using AES-128-GCM.
 *
 * The BEK itself is encrypted using the hardware-bound key using the DCP's AES
 * encryption engine with AES-128-ECB. The encrypted BEK, generated nonce,
 * BEK-encrypted payload and authentication tag make up the blob format together
 * with a version number, payload length and authentication tag.
 */

/**
 * struct dcp_blob_fmt - DCP BLOB format.
 *
 * @fmt_version: Format version, currently being %1.
 * @blob_key: Random AES 128 key which is used to encrypt @payload,
 *            @blob_key itself is encrypted with OTP or UNIQUE device key in
 *            AES-128-ECB mode by DCP.
 * @nonce: Random nonce used for @payload encryption.
 * @payload_len: Length of the plain text @payload.
 * @payload: The payload itself, encrypted using AES-128-GCM and @blob_key,
 *           GCM auth tag of size DCP_BLOB_AUTHLEN is attached at the end of it.
 *
 * The total size of a DCP BLOB is sizeof(struct dcp_blob_fmt) + @payload_len +
 * DCP_BLOB_AUTHLEN.
 */
struct dcp_blob_fmt {
	__u8 fmt_version;
	__u8 blob_key[AES_KEYSIZE_128];
	__u8 nonce[AES_KEYSIZE_128];
	__le32 payload_len;
	__u8 payload[];
} __packed;

static bool use_otp_key;
module_param_named(dcp_use_otp_key, use_otp_key, bool, 0);
MODULE_PARM_DESC(dcp_use_otp_key, "Use OTP instead of UNIQUE key for sealing");

static bool skip_zk_test;
module_param_named(dcp_skip_zk_test, skip_zk_test, bool, 0);
MODULE_PARM_DESC(dcp_skip_zk_test, "Don't test whether device keys are zero'ed");

static unsigned int calc_blob_len(unsigned int payload_len)
{
	return sizeof(struct dcp_blob_fmt) + payload_len + DCP_BLOB_AUTHLEN;
}

static int do_dcp_crypto(u8 *in, u8 *out, bool do_encrypt)
{
	struct skcipher_request *req = NULL;
	struct scatterlist src_sg, dst_sg;
	struct crypto_skcipher *tfm;
	u8 paes_key[DCP_PAES_KEYSIZE];
	DECLARE_CRYPTO_WAIT(wait);
	int res = 0;

	if (use_otp_key)
		paes_key[0] = DCP_PAES_KEY_OTP;
	else
		paes_key[0] = DCP_PAES_KEY_UNIQUE;

	tfm = crypto_alloc_skcipher("ecb-paes-dcp", CRYPTO_ALG_INTERNAL,
				    CRYPTO_ALG_INTERNAL);
	if (IS_ERR(tfm)) {
		res = PTR_ERR(tfm);
		tfm = NULL;
		goto out;
	}

	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		res = -ENOMEM;
		goto out;
	}

	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
				      CRYPTO_TFM_REQ_MAY_SLEEP,
				      crypto_req_done, &wait);
	res = crypto_skcipher_setkey(tfm, paes_key, sizeof(paes_key));
	if (res < 0)
		goto out;

	sg_init_one(&src_sg, in, AES_KEYSIZE_128);
	sg_init_one(&dst_sg, out, AES_KEYSIZE_128);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg, AES_KEYSIZE_128,
				   NULL);

	if (do_encrypt)
		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
	else
		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);

out:
	skcipher_request_free(req);
	crypto_free_skcipher(tfm);

	return res;
}

static int do_aead_crypto(u8 *in, u8 *out, size_t len, u8 *key, u8 *nonce,
			  bool do_encrypt)
{
	struct aead_request *aead_req = NULL;
	struct scatterlist src_sg, dst_sg;
	struct crypto_aead *aead;
	int ret;

	aead = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(aead)) {
		ret = PTR_ERR(aead);
		goto out;
	}

	ret = crypto_aead_setauthsize(aead, DCP_BLOB_AUTHLEN);
	if (ret < 0) {
		pr_err("Can't set crypto auth tag len: %d\n", ret);
		goto free_aead;
	}

	aead_req = aead_request_alloc(aead, GFP_KERNEL);
	if (!aead_req) {
		ret = -ENOMEM;
		goto free_aead;
	}

	sg_init_one(&src_sg, in, len);
	if (do_encrypt) {
		/*
		 * If we encrypt our buffer has extra space for the auth tag.
		 */
		sg_init_one(&dst_sg, out, len + DCP_BLOB_AUTHLEN);
	} else {
		sg_init_one(&dst_sg, out, len);
	}

	aead_request_set_crypt(aead_req, &src_sg, &dst_sg, len, nonce);
	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL,
				  NULL);
	aead_request_set_ad(aead_req, 0);

	if (crypto_aead_setkey(aead, key, AES_KEYSIZE_128)) {
		pr_err("Can't set crypto AEAD key\n");
		ret = -EINVAL;
		goto free_req;
	}

	if (do_encrypt)
		ret = crypto_aead_encrypt(aead_req);
	else
		ret = crypto_aead_decrypt(aead_req);

free_req:
	aead_request_free(aead_req);
free_aead:
	crypto_free_aead(aead);
out:
	return ret;
}

static int decrypt_blob_key(u8 *key)
{
	return do_dcp_crypto(key, key, false);
}

static int encrypt_blob_key(u8 *key)
{
	return do_dcp_crypto(key, key, true);
}

static int trusted_dcp_seal(struct trusted_key_payload *p, char *datablob)
{
	struct dcp_blob_fmt *b = (struct dcp_blob_fmt *)p->blob;
	int blen, ret;

	blen = calc_blob_len(p->key_len);
	if (blen > MAX_BLOB_SIZE)
		return -E2BIG;

	b->fmt_version = DCP_BLOB_VERSION;
	get_random_bytes(b->nonce, AES_KEYSIZE_128);
	get_random_bytes(b->blob_key, AES_KEYSIZE_128);

	ret = do_aead_crypto(p->key, b->payload, p->key_len, b->blob_key,
			     b->nonce, true);
	if (ret) {
		pr_err("Unable to encrypt blob payload: %i\n", ret);
		return ret;
	}

	ret = encrypt_blob_key(b->blob_key);
	if (ret) {
		pr_err("Unable to encrypt blob key: %i\n", ret);
		return ret;
	}

	b->payload_len = get_unaligned_le32(&p->key_len);
	p->blob_len = blen;
	return 0;
}

static int trusted_dcp_unseal(struct trusted_key_payload *p, char *datablob)
{
	struct dcp_blob_fmt *b = (struct dcp_blob_fmt *)p->blob;
	int blen, ret;

	if (b->fmt_version != DCP_BLOB_VERSION) {
		pr_err("DCP blob has bad version: %i, expected %i\n",
		       b->fmt_version, DCP_BLOB_VERSION);
		ret = -EINVAL;
		goto out;
	}

	p->key_len = le32_to_cpu(b->payload_len);
	blen = calc_blob_len(p->key_len);
	if (blen != p->blob_len) {
		pr_err("DCP blob has bad length: %i != %i\n", blen,
		       p->blob_len);
		ret = -EINVAL;
		goto out;
	}

	ret = decrypt_blob_key(b->blob_key);
	if (ret) {
		pr_err("Unable to decrypt blob key: %i\n", ret);
		goto out;
	}

	ret = do_aead_crypto(b->payload, p->key, p->key_len + DCP_BLOB_AUTHLEN,
			     b->blob_key, b->nonce, false);
	if (ret) {
		pr_err("Unwrap of DCP payload failed: %i\n", ret);
		goto out;
	}

	ret = 0;
out:
	return ret;
}

static int test_for_zero_key(void)
{
	/*
	 * Encrypting a plaintext of all 0x55 bytes will yield
	 * this ciphertext in case the DCP test key is used.
	 */
	static const u8 bad[] = {0x9a, 0xda, 0xe0, 0x54, 0xf6, 0x3d, 0xfa, 0xff,
				 0x5e, 0xa1, 0x8e, 0x45, 0xed, 0xf6, 0xea, 0x6f};
	void *buf = NULL;
	int ret = 0;

	if (skip_zk_test)
		goto out;

	buf = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}

	memset(buf, 0x55, AES_BLOCK_SIZE);

	ret = do_dcp_crypto(buf, buf, true);
	if (ret)
		goto out;

	if (memcmp(buf, bad, AES_BLOCK_SIZE) == 0) {
		pr_warn("Device neither in secure nor trusted mode!\n");
		ret = -EINVAL;
	}
out:
	kfree(buf);
	return ret;
}

static int trusted_dcp_init(void)
{
	int ret;

	if (use_otp_key)
		pr_info("Using DCP OTP key\n");

	ret = test_for_zero_key();
	if (ret) {
		pr_warn("Test for zero'ed keys failed: %i\n", ret);

		return -EINVAL;
	}

	return register_key_type(&key_type_trusted);
}

static void trusted_dcp_exit(void)
{
	unregister_key_type(&key_type_trusted);
}

struct trusted_key_ops dcp_trusted_key_ops = {
	.exit = trusted_dcp_exit,
	.init = trusted_dcp_init,
	.seal = trusted_dcp_seal,
	.unseal = trusted_dcp_unseal,
	.migratable = 0,
};