summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/linux/bpf_verifier.h16
-rw-r--r--kernel/bpf/verifier.c475
-rw-r--r--tools/testing/selftests/bpf/progs/iters.c695
-rw-r--r--tools/testing/selftests/bpf/progs/iters_task_vma.c1
4 files changed, 1133 insertions, 54 deletions
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h
index e67cd45a85be..24213a99cc79 100644
--- a/include/linux/bpf_verifier.h
+++ b/include/linux/bpf_verifier.h
@@ -373,10 +373,25 @@ struct bpf_verifier_state {
struct bpf_active_lock active_lock;
bool speculative;
bool active_rcu_lock;
+ /* If this state was ever pointed-to by other state's loop_entry field
+ * this flag would be set to true. Used to avoid freeing such states
+ * while they are still in use.
+ */
+ bool used_as_loop_entry;
/* first and last insn idx of this verifier state */
u32 first_insn_idx;
u32 last_insn_idx;
+ /* If this state is a part of states loop this field points to some
+ * parent of this state such that:
+ * - it is also a member of the same states loop;
+ * - DFS states traversal starting from initial state visits loop_entry
+ * state before this state.
+ * Used to compute topmost loop entry for state loops.
+ * State loops might appear because of open coded iterators logic.
+ * See get_loop_entry() for more information.
+ */
+ struct bpf_verifier_state *loop_entry;
/* jmp history recorded from first to last.
* backtracking is using it to go from last to first.
* For most states jmp_history_cnt is [0-3].
@@ -384,6 +399,7 @@ struct bpf_verifier_state {
*/
struct bpf_idx_pair *jmp_history;
u32 jmp_history_cnt;
+ u32 dfs_depth;
};
#define bpf_get_spilled_reg(slot, frame, mask) \
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index e9bc5d4a25a1..98f9d0f35931 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -1802,6 +1802,8 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
dst_state->parent = src->parent;
dst_state->first_insn_idx = src->first_insn_idx;
dst_state->last_insn_idx = src->last_insn_idx;
+ dst_state->dfs_depth = src->dfs_depth;
+ dst_state->used_as_loop_entry = src->used_as_loop_entry;
for (i = 0; i <= src->curframe; i++) {
dst = dst_state->frame[i];
if (!dst) {
@@ -1817,11 +1819,203 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
return 0;
}
+static u32 state_htab_size(struct bpf_verifier_env *env)
+{
+ return env->prog->len;
+}
+
+static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
+{
+ struct bpf_verifier_state *cur = env->cur_state;
+ struct bpf_func_state *state = cur->frame[cur->curframe];
+
+ return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
+}
+
+static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
+{
+ int fr;
+
+ if (a->curframe != b->curframe)
+ return false;
+
+ for (fr = a->curframe; fr >= 0; fr--)
+ if (a->frame[fr]->callsite != b->frame[fr]->callsite)
+ return false;
+
+ return true;
+}
+
+/* Open coded iterators allow back-edges in the state graph in order to
+ * check unbounded loops that iterators.
+ *
+ * In is_state_visited() it is necessary to know if explored states are
+ * part of some loops in order to decide whether non-exact states
+ * comparison could be used:
+ * - non-exact states comparison establishes sub-state relation and uses
+ * read and precision marks to do so, these marks are propagated from
+ * children states and thus are not guaranteed to be final in a loop;
+ * - exact states comparison just checks if current and explored states
+ * are identical (and thus form a back-edge).
+ *
+ * Paper "A New Algorithm for Identifying Loops in Decompilation"
+ * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
+ * algorithm for loop structure detection and gives an overview of
+ * relevant terminology. It also has helpful illustrations.
+ *
+ * [1] https://api.semanticscholar.org/CorpusID:15784067
+ *
+ * We use a similar algorithm but because loop nested structure is
+ * irrelevant for verifier ours is significantly simpler and resembles
+ * strongly connected components algorithm from Sedgewick's textbook.
+ *
+ * Define topmost loop entry as a first node of the loop traversed in a
+ * depth first search starting from initial state. The goal of the loop
+ * tracking algorithm is to associate topmost loop entries with states
+ * derived from these entries.
+ *
+ * For each step in the DFS states traversal algorithm needs to identify
+ * the following situations:
+ *
+ * initial initial initial
+ * | | |
+ * V V V
+ * ... ... .---------> hdr
+ * | | | |
+ * V V | V
+ * cur .-> succ | .------...
+ * | | | | | |
+ * V | V | V V
+ * succ '-- cur | ... ...
+ * | | |
+ * | V V
+ * | succ <- cur
+ * | |
+ * | V
+ * | ...
+ * | |
+ * '----'
+ *
+ * (A) successor state of cur (B) successor state of cur or it's entry
+ * not yet traversed are in current DFS path, thus cur and succ
+ * are members of the same outermost loop
+ *
+ * initial initial
+ * | |
+ * V V
+ * ... ...
+ * | |
+ * V V
+ * .------... .------...
+ * | | | |
+ * V V V V
+ * .-> hdr ... ... ...
+ * | | | | |
+ * | V V V V
+ * | succ <- cur succ <- cur
+ * | | |
+ * | V V
+ * | ... ...
+ * | | |
+ * '----' exit
+ *
+ * (C) successor state of cur is a part of some loop but this loop
+ * does not include cur or successor state is not in a loop at all.
+ *
+ * Algorithm could be described as the following python code:
+ *
+ * traversed = set() # Set of traversed nodes
+ * entries = {} # Mapping from node to loop entry
+ * depths = {} # Depth level assigned to graph node
+ * path = set() # Current DFS path
+ *
+ * # Find outermost loop entry known for n
+ * def get_loop_entry(n):
+ * h = entries.get(n, None)
+ * while h in entries and entries[h] != h:
+ * h = entries[h]
+ * return h
+ *
+ * # Update n's loop entry if h's outermost entry comes
+ * # before n's outermost entry in current DFS path.
+ * def update_loop_entry(n, h):
+ * n1 = get_loop_entry(n) or n
+ * h1 = get_loop_entry(h) or h
+ * if h1 in path and depths[h1] <= depths[n1]:
+ * entries[n] = h1
+ *
+ * def dfs(n, depth):
+ * traversed.add(n)
+ * path.add(n)
+ * depths[n] = depth
+ * for succ in G.successors(n):
+ * if succ not in traversed:
+ * # Case A: explore succ and update cur's loop entry
+ * # only if succ's entry is in current DFS path.
+ * dfs(succ, depth + 1)
+ * h = get_loop_entry(succ)
+ * update_loop_entry(n, h)
+ * else:
+ * # Case B or C depending on `h1 in path` check in update_loop_entry().
+ * update_loop_entry(n, succ)
+ * path.remove(n)
+ *
+ * To adapt this algorithm for use with verifier:
+ * - use st->branch == 0 as a signal that DFS of succ had been finished
+ * and cur's loop entry has to be updated (case A), handle this in
+ * update_branch_counts();
+ * - use st->branch > 0 as a signal that st is in the current DFS path;
+ * - handle cases B and C in is_state_visited();
+ * - update topmost loop entry for intermediate states in get_loop_entry().
+ */
+static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
+{
+ struct bpf_verifier_state *topmost = st->loop_entry, *old;
+
+ while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
+ topmost = topmost->loop_entry;
+ /* Update loop entries for intermediate states to avoid this
+ * traversal in future get_loop_entry() calls.
+ */
+ while (st && st->loop_entry != topmost) {
+ old = st->loop_entry;
+ st->loop_entry = topmost;
+ st = old;
+ }
+ return topmost;
+}
+
+static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
+{
+ struct bpf_verifier_state *cur1, *hdr1;
+
+ cur1 = get_loop_entry(cur) ?: cur;
+ hdr1 = get_loop_entry(hdr) ?: hdr;
+ /* The head1->branches check decides between cases B and C in
+ * comment for get_loop_entry(). If hdr1->branches == 0 then
+ * head's topmost loop entry is not in current DFS path,
+ * hence 'cur' and 'hdr' are not in the same loop and there is
+ * no need to update cur->loop_entry.
+ */
+ if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
+ cur->loop_entry = hdr;
+ hdr->used_as_loop_entry = true;
+ }
+}
+
static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
while (st) {
u32 br = --st->branches;
+ /* br == 0 signals that DFS exploration for 'st' is finished,
+ * thus it is necessary to update parent's loop entry if it
+ * turned out that st is a part of some loop.
+ * This is a part of 'case A' in get_loop_entry() comment.
+ */
+ if (br == 0 && st->parent && st->loop_entry)
+ update_loop_entry(st->parent, st->loop_entry);
+
/* WARN_ON(br > 1) technically makes sense here,
* but see comment in push_stack(), hence:
*/
@@ -7696,6 +7890,81 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
return 0;
}
+/* Look for a previous loop entry at insn_idx: nearest parent state
+ * stopped at insn_idx with callsites matching those in cur->frame.
+ */
+static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *cur,
+ int insn_idx)
+{
+ struct bpf_verifier_state_list *sl;
+ struct bpf_verifier_state *st;
+
+ /* Explored states are pushed in stack order, most recent states come first */
+ sl = *explored_state(env, insn_idx);
+ for (; sl; sl = sl->next) {
+ /* If st->branches != 0 state is a part of current DFS verification path,
+ * hence cur & st for a loop.
+ */
+ st = &sl->state;
+ if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
+ st->dfs_depth < cur->dfs_depth)
+ return st;
+ }
+
+ return NULL;
+}
+
+static void reset_idmap_scratch(struct bpf_verifier_env *env);
+static bool regs_exact(const struct bpf_reg_state *rold,
+ const struct bpf_reg_state *rcur,
+ struct bpf_idmap *idmap);
+
+static void maybe_widen_reg(struct bpf_verifier_env *env,
+ struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
+ struct bpf_idmap *idmap)
+{
+ if (rold->type != SCALAR_VALUE)
+ return;
+ if (rold->type != rcur->type)
+ return;
+ if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
+ return;
+ __mark_reg_unknown(env, rcur);
+}
+
+static int widen_imprecise_scalars(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *old,
+ struct bpf_verifier_state *cur)
+{
+ struct bpf_func_state *fold, *fcur;
+ int i, fr;
+
+ reset_idmap_scratch(env);
+ for (fr = old->curframe; fr >= 0; fr--) {
+ fold = old->frame[fr];
+ fcur = cur->frame[fr];
+
+ for (i = 0; i < MAX_BPF_REG; i++)
+ maybe_widen_reg(env,
+ &fold->regs[i],
+ &fcur->regs[i],
+ &env->idmap_scratch);
+
+ for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
+ if (!is_spilled_reg(&fold->stack[i]) ||
+ !is_spilled_reg(&fcur->stack[i]))
+ continue;
+
+ maybe_widen_reg(env,
+ &fold->stack[i].spilled_ptr,
+ &fcur->stack[i].spilled_ptr,
+ &env->idmap_scratch);
+ }
+ }
+ return 0;
+}
+
/* process_iter_next_call() is called when verifier gets to iterator's next
* "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
* to it as just "iter_next()" in comments below.
@@ -7737,25 +8006,47 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
* is some statically known limit on number of iterations (e.g., if there is
* an explicit `if n > 100 then break;` statement somewhere in the loop).
*
- * One very subtle but very important aspect is that we *always* simulate NULL
- * condition first (as the current state) before we simulate non-NULL case.
- * This has to do with intricacies of scalar precision tracking. By simulating
- * "exit condition" of iter_next() returning NULL first, we make sure all the
- * relevant precision marks *that will be set **after** we exit iterator loop*
- * are propagated backwards to common parent state of NULL and non-NULL
- * branches. Thanks to that, state equivalence checks done later in forked
- * state, when reaching iter_next() for ACTIVE iterator, can assume that
- * precision marks are finalized and won't change. Because simulating another
- * ACTIVE iterator iteration won't change them (because given same input
- * states we'll end up with exactly same output states which we are currently
- * comparing; and verification after the loop already propagated back what
- * needs to be **additionally** tracked as precise). It's subtle, grok
- * precision tracking for more intuitive understanding.
+ * Iteration convergence logic in is_state_visited() relies on exact
+ * states comparison, which ignores read and precision marks.
+ * This is necessary because read and precision marks are not finalized
+ * while in the loop. Exact comparison might preclude convergence for
+ * simple programs like below:
+ *
+ * i = 0;
+ * while(iter_next(&it))
+ * i++;
+ *
+ * At each iteration step i++ would produce a new distinct state and
+ * eventually instruction processing limit would be reached.
+ *
+ * To avoid such behavior speculatively forget (widen) range for
+ * imprecise scalar registers, if those registers were not precise at the
+ * end of the previous iteration and do not match exactly.
+ *
+ * This is a conservative heuristic that allows to verify wide range of programs,
+ * however it precludes verification of programs that conjure an
+ * imprecise value on the first loop iteration and use it as precise on a second.
+ * For example, the following safe program would fail to verify:
+ *
+ * struct bpf_num_iter it;
+ * int arr[10];
+ * int i = 0, a = 0;
+ * bpf_iter_num_new(&it, 0, 10);
+ * while (bpf_iter_num_next(&it)) {
+ * if (a == 0) {
+ * a = 1;
+ * i = 7; // Because i changed verifier would forget
+ * // it's range on second loop entry.
+ * } else {
+ * arr[i] = 42; // This would fail to verify.
+ * }
+ * }
+ * bpf_iter_num_destroy(&it);
*/
static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
struct bpf_kfunc_call_arg_meta *meta)
{
- struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
+ struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
struct bpf_reg_state *cur_iter, *queued_iter;
int iter_frameno = meta->iter.frameno;
@@ -7773,6 +8064,19 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
}
if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
+ /* Because iter_next() call is a checkpoint is_state_visitied()
+ * should guarantee parent state with same call sites and insn_idx.
+ */
+ if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
+ !same_callsites(cur_st->parent, cur_st)) {
+ verbose(env, "bug: bad parent state for iter next call");
+ return -EFAULT;
+ }
+ /* Note cur_st->parent in the call below, it is necessary to skip
+ * checkpoint created for cur_st by is_state_visited()
+ * right at this instruction.
+ */
+ prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
/* branch out active iter state */
queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
if (!queued_st)
@@ -7781,6 +8085,8 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
queued_iter->iter.depth++;
+ if (prev_st)
+ widen_imprecise_scalars(env, prev_st, queued_st);
queued_fr = queued_st->frame[queued_st->curframe];
mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
@@ -15020,21 +15326,6 @@ enum {
BRANCH = 2,
};
-static u32 state_htab_size(struct bpf_verifier_env *env)
-{
- return env->prog->len;
-}
-
-static struct bpf_verifier_state_list **explored_state(
- struct bpf_verifier_env *env,
- int idx)
-{
- struct bpf_verifier_state *cur = env->cur_state;
- struct bpf_func_state *state = cur->frame[cur->curframe];
-
- return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
-}
-
static void mark_prune_point(struct bpf_verifier_env *env, int idx)
{
env->insn_aux_data[idx].prune_point = true;
@@ -15911,18 +16202,14 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn,
struct bpf_verifier_state *cur)
{
struct bpf_verifier_state_list *sl;
- int i;
sl = *explored_state(env, insn);
while (sl) {
if (sl->state.branches)
goto next;
if (sl->state.insn_idx != insn ||
- sl->state.curframe != cur->curframe)
+ !same_callsites(&sl->state, cur))
goto next;
- for (i = 0; i <= cur->curframe; i++)
- if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
- goto next;
clean_verifier_state(env, &sl->state);
next:
sl = sl->next;
@@ -15940,8 +16227,11 @@ static bool regs_exact(const struct bpf_reg_state *rold,
/* Returns true if (rold safe implies rcur safe) */
static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
- struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
+ struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
{
+ if (exact)
+ return regs_exact(rold, rcur, idmap);
+
if (!(rold->live & REG_LIVE_READ))
/* explored state didn't use this */
return true;
@@ -16058,7 +16348,7 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
}
static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
- struct bpf_func_state *cur, struct bpf_idmap *idmap)
+ struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
{
int i, spi;
@@ -16071,7 +16361,12 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
spi = i / BPF_REG_SIZE;
- if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
+ if (exact &&
+ old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
+ cur->stack[spi].slot_type[i % BPF_REG_SIZE])
+ return false;
+
+ if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
i += BPF_REG_SIZE - 1;
/* explored state didn't use this */
continue;
@@ -16121,7 +16416,7 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
* return false to continue verification of this path
*/
if (!regsafe(env, &old->stack[spi].spilled_ptr,
- &cur->stack[spi].spilled_ptr, idmap))
+ &cur->stack[spi].spilled_ptr, idmap, exact))
return false;
break;
case STACK_DYNPTR:
@@ -16203,16 +16498,16 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
* the current state will reach 'bpf_exit' instruction safely
*/
static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
- struct bpf_func_state *cur)
+ struct bpf_func_state *cur, bool exact)
{
int i;
for (i = 0; i < MAX_BPF_REG; i++)
if (!regsafe(env, &old->regs[i], &cur->regs[i],
- &env->idmap_scratch))
+ &env->idmap_scratch, exact))
return false;
- if (!stacksafe(env, old, cur, &env->idmap_scratch))
+ if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
return false;
if (!refsafe(old, cur, &env->idmap_scratch))
@@ -16221,17 +16516,23 @@ static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_stat
return true;
}
+static void reset_idmap_scratch(struct bpf_verifier_env *env)
+{
+ env->idmap_scratch.tmp_id_gen = env->id_gen;
+ memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
+}
+
static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
- struct bpf_verifier_state *cur)
+ struct bpf_verifier_state *cur,
+ bool exact)
{
int i;
if (old->curframe != cur->curframe)
return false;
- env->idmap_scratch.tmp_id_gen = env->id_gen;
- memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
+ reset_idmap_scratch(env);
/* Verification state from speculative execution simulation
* must never prune a non-speculative execution one.
@@ -16261,7 +16562,7 @@ static bool states_equal(struct bpf_verifier_env *env,
for (i = 0; i <= old->curframe; i++) {
if (old->frame[i]->callsite != cur->frame[i]->callsite)
return false;
- if (!func_states_equal(env, old->frame[i], cur->frame[i]))
+ if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
return false;
}
return true;
@@ -16515,10 +16816,11 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_verifier_state_list *new_sl;
struct bpf_verifier_state_list *sl, **pprev;
- struct bpf_verifier_state *cur = env->cur_state, *new;
- int i, j, err, states_cnt = 0;
+ struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
+ int i, j, n, err, states_cnt = 0;
bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
bool add_new_state = force_new_state;
+ bool force_exact;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
@@ -16571,9 +16873,33 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
* It's safe to assume that iterator loop will finish, taking into
* account iter_next() contract of eventually returning
* sticky NULL result.
+ *
+ * Note, that states have to be compared exactly in this case because
+ * read and precision marks might not be finalized inside the loop.
+ * E.g. as in the program below:
+ *
+ * 1. r7 = -16
+ * 2. r6 = bpf_get_prandom_u32()
+ * 3. while (bpf_iter_num_next(&fp[-8])) {
+ * 4. if (r6 != 42) {
+ * 5. r7 = -32
+ * 6. r6 = bpf_get_prandom_u32()
+ * 7. continue
+ * 8. }
+ * 9. r0 = r10
+ * 10. r0 += r7
+ * 11. r8 = *(u64 *)(r0 + 0)
+ * 12. r6 = bpf_get_prandom_u32()
+ * 13. }
+ *
+ * Here verifier would first visit path 1-3, create a checkpoint at 3
+ * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
+ * not have read or precision mark for r7 yet, thus inexact states
+ * comparison would discard current state with r7=-32
+ * => unsafe memory access at 11 would not be caught.
*/
if (is_iter_next_insn(env, insn_idx)) {
- if (states_equal(env, &sl->state, cur)) {
+ if (states_equal(env, &sl->state, cur, true)) {
struct bpf_func_state *cur_frame;
struct bpf_reg_state *iter_state, *iter_reg;
int spi;
@@ -16589,17 +16915,23 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
*/
spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
- if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
+ if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
+ update_loop_entry(cur, &sl->state);
goto hit;
+ }
}
goto skip_inf_loop_check;
}
/* attempt to detect infinite loop to avoid unnecessary doomed work */
if (states_maybe_looping(&sl->state, cur) &&
- states_equal(env, &sl->state, cur) &&
+ states_equal(env, &sl->state, cur, false) &&
!iter_active_depths_differ(&sl->state, cur)) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
+ verbose(env, "cur state:");
+ print_verifier_state(env, cur->frame[cur->curframe], true);
+ verbose(env, "old state:");
+ print_verifier_state(env, sl->state.frame[cur->curframe], true);
return -EINVAL;
}
/* if the verifier is processing a loop, avoid adding new state
@@ -16621,7 +16953,36 @@ skip_inf_loop_check:
add_new_state = false;
goto miss;
}
- if (states_equal(env, &sl->state, cur)) {
+ /* If sl->state is a part of a loop and this loop's entry is a part of
+ * current verification path then states have to be compared exactly.
+ * 'force_exact' is needed to catch the following case:
+ *
+ * initial Here state 'succ' was processed first,
+ * | it was eventually tracked to produce a
+ * V state identical to 'hdr'.
+ * .---------> hdr All branches from 'succ' had been explored
+ * | | and thus 'succ' has its .branches == 0.
+ * | V
+ * | .------... Suppose states 'cur' and 'succ' correspond
+ * | | | to the same instruction + callsites.
+ * | V V In such case it is necessary to check
+ * | ... ... if 'succ' and 'cur' are states_equal().
+ * | | | If 'succ' and 'cur' are a part of the
+ * | V V same loop exact flag has to be set.
+ * | succ <- cur To check if that is the case, verify
+ * | | if loop entry of 'succ' is in current
+ * | V DFS path.
+ * | ...
+ * | |
+ * '----'
+ *
+ * Additional details are in the comment before get_loop_entry().
+ */
+ loop_entry = get_loop_entry(&sl->state);
+ force_exact = loop_entry && loop_entry->branches > 0;
+ if (states_equal(env, &sl->state, cur, force_exact)) {
+ if (force_exact)
+ update_loop_entry(cur, loop_entry);
hit:
sl->hit_cnt++;
/* reached equivalent register/stack state,
@@ -16660,13 +17021,18 @@ miss:
* to keep checking from state equivalence point of view.
* Higher numbers increase max_states_per_insn and verification time,
* but do not meaningfully decrease insn_processed.
+ * 'n' controls how many times state could miss before eviction.
+ * Use bigger 'n' for checkpoints because evicting checkpoint states
+ * too early would hinder iterator convergence.
*/
- if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
+ n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
+ if (sl->miss_cnt > sl->hit_cnt * n + n) {
/* the state is unlikely to be useful. Remove it to
* speed up verification
*/
*pprev = sl->next;
- if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
+ if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
+ !sl->state.used_as_loop_entry) {
u32 br = sl->state.branches;
WARN_ONCE(br,
@@ -16735,6 +17101,7 @@ next:
cur->parent = new;
cur->first_insn_idx = insn_idx;
+ cur->dfs_depth = new->dfs_depth + 1;
clear_jmp_history(cur);
new_sl->next = *explored_state(env, insn_idx);
*explored_state(env, insn_idx) = new_sl;
diff --git a/tools/testing/selftests/bpf/progs/iters.c b/tools/testing/selftests/bpf/progs/iters.c
index 6b9b3c56f009..c20c4e38b71c 100644
--- a/tools/testing/selftests/bpf/progs/iters.c
+++ b/tools/testing/selftests/bpf/progs/iters.c
@@ -14,6 +14,13 @@ int my_pid;
int arr[256];
int small_arr[16] SEC(".data.small_arr");
+struct {
+ __uint(type, BPF_MAP_TYPE_HASH);
+ __uint(max_entries, 10);
+ __type(key, int);
+ __type(value, int);
+} amap SEC(".maps");
+
#ifdef REAL_TEST
#define MY_PID_GUARD() if (my_pid != (bpf_get_current_pid_tgid() >> 32)) return 0
#else
@@ -716,4 +723,692 @@ int iter_pass_iter_ptr_to_subprog(const void *ctx)
return 0;
}
+SEC("?raw_tp")
+__failure
+__msg("R1 type=scalar expected=fp")
+__naked int delayed_read_mark(void)
+{
+ /* This is equivalent to C program below.
+ * The call to bpf_iter_num_next() is reachable with r7 values &fp[-16] and 0xdead.
+ * State with r7=&fp[-16] is visited first and follows r6 != 42 ... continue branch.
+ * At this point iterator next() call is reached with r7 that has no read mark.
+ * Loop body with r7=0xdead would only be visited if verifier would decide to continue
+ * with second loop iteration. Absence of read mark on r7 might affect state
+ * equivalent logic used for iterator convergence tracking.
+ *
+ * r7 = &fp[-16]
+ * fp[-16] = 0
+ * r6 = bpf_get_prandom_u32()
+ * bpf_iter_num_new(&fp[-8], 0, 10)
+ * while (bpf_iter_num_next(&fp[-8])) {
+ * r6++
+ * if (r6 != 42) {
+ * r7 = 0xdead
+ * continue;
+ * }
+ * bpf_probe_read_user(r7, 8, 0xdeadbeef); // this is not safe
+ * }
+ * bpf_iter_num_destroy(&fp[-8])
+ * return 0
+ */
+ asm volatile (
+ "r7 = r10;"
+ "r7 += -16;"
+ "r0 = 0;"
+ "*(u64 *)(r7 + 0) = r0;"
+ "call %[bpf_get_prandom_u32];"
+ "r6 = r0;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "1:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto 2f;"
+ "r6 += 1;"
+ "if r6 != 42 goto 3f;"
+ "r7 = 0xdead;"
+ "goto 1b;"
+ "3:"
+ "r1 = r7;"
+ "r2 = 8;"
+ "r3 = 0xdeadbeef;"
+ "call %[bpf_probe_read_user];"
+ "goto 1b;"
+ "2:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_get_prandom_u32),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy),
+ __imm(bpf_probe_read_user)
+ : __clobber_all
+ );
+}
+
+SEC("?raw_tp")
+__failure
+__msg("math between fp pointer and register with unbounded")
+__naked int delayed_precision_mark(void)
+{
+ /* This is equivalent to C program below.
+ * The test is similar to delayed_iter_mark but verifies that incomplete
+ * precision don't fool verifier.
+ * The call to bpf_iter_num_next() is reachable with r7 values -16 and -32.
+ * State with r7=-16 is visited first and follows r6 != 42 ... continue branch.
+ * At this point iterator next() call is reached with r7 that has no read
+ * and precision marks.
+ * Loop body with r7=-32 would only be visited if verifier would decide to continue
+ * with second loop iteration. Absence of precision mark on r7 might affect state
+ * equivalent logic used for iterator convergence tracking.
+ *
+ * r8 = 0
+ * fp[-16] = 0
+ * r7 = -16
+ * r6 = bpf_get_prandom_u32()
+ * bpf_iter_num_new(&fp[-8], 0, 10)
+ * while (bpf_iter_num_next(&fp[-8])) {
+ * if (r6 != 42) {
+ * r7 = -32
+ * r6 = bpf_get_prandom_u32()
+ * continue;
+ * }
+ * r0 = r10
+ * r0 += r7
+ * r8 = *(u64 *)(r0 + 0) // this is not safe
+ * r6 = bpf_get_prandom_u32()
+ * }
+ * bpf_iter_num_destroy(&fp[-8])
+ * return r8
+ */
+ asm volatile (
+ "r8 = 0;"
+ "*(u64 *)(r10 - 16) = r8;"
+ "r7 = -16;"
+ "call %[bpf_get_prandom_u32];"
+ "r6 = r0;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "1:"
+ "r1 = r10;"
+ "r1 += -8;\n"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto 2f;"
+ "if r6 != 42 goto 3f;"
+ "r7 = -32;"
+ "call %[bpf_get_prandom_u32];"
+ "r6 = r0;"
+ "goto 1b;\n"
+ "3:"
+ "r0 = r10;"
+ "r0 += r7;"
+ "r8 = *(u64 *)(r0 + 0);"
+ "call %[bpf_get_prandom_u32];"
+ "r6 = r0;"
+ "goto 1b;\n"
+ "2:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = r8;"
+ "exit;"
+ :
+ : __imm(bpf_get_prandom_u32),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy),
+ __imm(bpf_probe_read_user)
+ : __clobber_all
+ );
+}
+
+SEC("?raw_tp")
+__failure
+__msg("math between fp pointer and register with unbounded")
+__flag(BPF_F_TEST_STATE_FREQ)
+__naked int loop_state_deps1(void)
+{
+ /* This is equivalent to C program below.
+ *
+ * The case turns out to be tricky in a sense that:
+ * - states with c=-25 are explored only on a second iteration
+ * of the outer loop;
+ * - states with read+precise mark on c are explored only on
+ * second iteration of the inner loop and in a state which
+ * is pushed to states stack first.
+ *
+ * Depending on the details of iterator convergence logic
+ * verifier might stop states traversal too early and miss
+ * unsafe c=-25 memory access.
+ *
+ * j = iter_new(); // fp[-16]
+ * a = 0; // r6
+ * b = 0; // r7
+ * c = -24; // r8
+ * while (iter_next(j)) {
+ * i = iter_new(); // fp[-8]
+ * a = 0; // r6
+ * b = 0; // r7
+ * while (iter_next(i)) {
+ * if (a == 1) {
+ * a = 0;
+ * b = 1;
+ * } else if (a == 0) {
+ * a = 1;
+ * if (random() == 42)
+ * continue;
+ * if (b == 1) {
+ * *(r10 + c) = 7; // this is not safe
+ * iter_destroy(i);
+ * iter_destroy(j);
+ * return;
+ * }
+ * }
+ * }
+ * iter_destroy(i);
+ * a = 0;
+ * b = 0;
+ * c = -25;
+ * }
+ * iter_destroy(j);
+ * return;
+ */
+ asm volatile (
+ "r1 = r10;"
+ "r1 += -16;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "r8 = -24;"
+ "j_loop_%=:"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto j_loop_end_%=;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "i_loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto i_loop_end_%=;"
+ "check_one_r6_%=:"
+ "if r6 != 1 goto check_zero_r6_%=;"
+ "r6 = 0;"
+ "r7 = 1;"
+ "goto i_loop_%=;"
+ "check_zero_r6_%=:"
+ "if r6 != 0 goto i_loop_%=;"
+ "r6 = 1;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto check_one_r7_%=;"
+ "goto i_loop_%=;"
+ "check_one_r7_%=:"
+ "if r7 != 1 goto i_loop_%=;"
+ "r0 = r10;"
+ "r0 += r8;"
+ "r1 = 7;"
+ "*(u64 *)(r0 + 0) = r1;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ "i_loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "r8 = -25;"
+ "goto j_loop_%=;"
+ "j_loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_get_prandom_u32),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy)
+ : __clobber_all
+ );
+}
+
+SEC("?raw_tp")
+__failure
+__msg("math between fp pointer and register with unbounded")
+__flag(BPF_F_TEST_STATE_FREQ)
+__naked int loop_state_deps2(void)
+{
+ /* This is equivalent to C program below.
+ *
+ * The case turns out to be tricky in a sense that:
+ * - states with read+precise mark on c are explored only on a second
+ * iteration of the first inner loop and in a state which is pushed to
+ * states stack first.
+ * - states with c=-25 are explored only on a second iteration of the
+ * second inner loop and in a state which is pushed to states stack
+ * first.
+ *
+ * Depending on the details of iterator convergence logic
+ * verifier might stop states traversal too early and miss
+ * unsafe c=-25 memory access.
+ *
+ * j = iter_new(); // fp[-16]
+ * a = 0; // r6
+ * b = 0; // r7
+ * c = -24; // r8
+ * while (iter_next(j)) {
+ * i = iter_new(); // fp[-8]
+ * a = 0; // r6
+ * b = 0; // r7
+ * while (iter_next(i)) {
+ * if (a == 1) {
+ * a = 0;
+ * b = 1;
+ * } else if (a == 0) {
+ * a = 1;
+ * if (random() == 42)
+ * continue;
+ * if (b == 1) {
+ * *(r10 + c) = 7; // this is not safe
+ * iter_destroy(i);
+ * iter_destroy(j);
+ * return;
+ * }
+ * }
+ * }
+ * iter_destroy(i);
+ * i = iter_new(); // fp[-8]
+ * a = 0; // r6
+ * b = 0; // r7
+ * while (iter_next(i)) {
+ * if (a == 1) {
+ * a = 0;
+ * b = 1;
+ * } else if (a == 0) {
+ * a = 1;
+ * if (random() == 42)
+ * continue;
+ * if (b == 1) {
+ * a = 0;
+ * c = -25;
+ * }
+ * }
+ * }
+ * iter_destroy(i);
+ * }
+ * iter_destroy(j);
+ * return;
+ */
+ asm volatile (
+ "r1 = r10;"
+ "r1 += -16;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "r8 = -24;"
+ "j_loop_%=:"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto j_loop_end_%=;"
+
+ /* first inner loop */
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "i_loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto i_loop_end_%=;"
+ "check_one_r6_%=:"
+ "if r6 != 1 goto check_zero_r6_%=;"
+ "r6 = 0;"
+ "r7 = 1;"
+ "goto i_loop_%=;"
+ "check_zero_r6_%=:"
+ "if r6 != 0 goto i_loop_%=;"
+ "r6 = 1;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto check_one_r7_%=;"
+ "goto i_loop_%=;"
+ "check_one_r7_%=:"
+ "if r7 != 1 goto i_loop_%=;"
+ "r0 = r10;"
+ "r0 += r8;"
+ "r1 = 7;"
+ "*(u64 *)(r0 + 0) = r1;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ "i_loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+
+ /* second inner loop */
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "r6 = 0;"
+ "r7 = 0;"
+ "i2_loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto i2_loop_end_%=;"
+ "check2_one_r6_%=:"
+ "if r6 != 1 goto check2_zero_r6_%=;"
+ "r6 = 0;"
+ "r7 = 1;"
+ "goto i2_loop_%=;"
+ "check2_zero_r6_%=:"
+ "if r6 != 0 goto i2_loop_%=;"
+ "r6 = 1;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto check2_one_r7_%=;"
+ "goto i2_loop_%=;"
+ "check2_one_r7_%=:"
+ "if r7 != 1 goto i2_loop_%=;"
+ "r6 = 0;"
+ "r8 = -25;"
+ "goto i2_loop_%=;"
+ "i2_loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+
+ "r6 = 0;"
+ "r7 = 0;"
+ "goto j_loop_%=;"
+ "j_loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -16;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_get_prandom_u32),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy)
+ : __clobber_all
+ );
+}
+
+SEC("?raw_tp")
+__success
+__naked int triple_continue(void)
+{
+ /* This is equivalent to C program below.
+ * High branching factor of the loop body turned out to be
+ * problematic for one of the iterator convergence tracking
+ * algorithms explored.
+ *
+ * r6 = bpf_get_prandom_u32()
+ * bpf_iter_num_new(&fp[-8], 0, 10)
+ * while (bpf_iter_num_next(&fp[-8])) {
+ * if (bpf_get_prandom_u32() != 42)
+ * continue;
+ * if (bpf_get_prandom_u32() != 42)
+ * continue;
+ * if (bpf_get_prandom_u32() != 42)
+ * continue;
+ * r0 += 0;
+ * }
+ * bpf_iter_num_destroy(&fp[-8])
+ * return 0
+ */
+ asm volatile (
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto loop_end_%=;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto loop_%=;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto loop_%=;"
+ "call %[bpf_get_prandom_u32];"
+ "if r0 != 42 goto loop_%=;"
+ "r0 += 0;"
+ "goto loop_%=;"
+ "loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_get_prandom_u32),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy)
+ : __clobber_all
+ );
+}
+
+SEC("?raw_tp")
+__success
+__naked int widen_spill(void)
+{
+ /* This is equivalent to C program below.
+ * The counter is stored in fp[-16], if this counter is not widened
+ * verifier states representing loop iterations would never converge.
+ *
+ * fp[-16] = 0
+ * bpf_iter_num_new(&fp[-8], 0, 10)
+ * while (bpf_iter_num_next(&fp[-8])) {
+ * r0 = fp[-16];
+ * r0 += 1;
+ * fp[-16] = r0;
+ * }
+ * bpf_iter_num_destroy(&fp[-8])
+ * return 0
+ */
+ asm volatile (
+ "r0 = 0;"
+ "*(u64 *)(r10 - 16) = r0;"
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto loop_end_%=;"
+ "r0 = *(u64 *)(r10 - 16);"
+ "r0 += 1;"
+ "*(u64 *)(r10 - 16) = r0;"
+ "goto loop_%=;"
+ "loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy)
+ : __clobber_all
+ );
+}
+
+SEC("raw_tp")
+__success
+__naked int checkpoint_states_deletion(void)
+{
+ /* This is equivalent to C program below.
+ *
+ * int *a, *b, *c, *d, *e, *f;
+ * int i, sum = 0;
+ * bpf_for(i, 0, 10) {
+ * a = bpf_map_lookup_elem(&amap, &i);
+ * b = bpf_map_lookup_elem(&amap, &i);
+ * c = bpf_map_lookup_elem(&amap, &i);
+ * d = bpf_map_lookup_elem(&amap, &i);
+ * e = bpf_map_lookup_elem(&amap, &i);
+ * f = bpf_map_lookup_elem(&amap, &i);
+ * if (a) sum += 1;
+ * if (b) sum += 1;
+ * if (c) sum += 1;
+ * if (d) sum += 1;
+ * if (e) sum += 1;
+ * if (f) sum += 1;
+ * }
+ * return 0;
+ *
+ * The body of the loop spawns multiple simulation paths
+ * with different combination of NULL/non-NULL information for a/b/c/d/e/f.
+ * Each combination is unique from states_equal() point of view.
+ * Explored states checkpoint is created after each iterator next call.
+ * Iterator convergence logic expects that eventually current state
+ * would get equal to one of the explored states and thus loop
+ * exploration would be finished (at-least for a specific path).
+ * Verifier evicts explored states with high miss to hit ratio
+ * to to avoid comparing current state with too many explored
+ * states per instruction.
+ * This test is designed to "stress test" eviction policy defined using formula:
+ *
+ * sl->miss_cnt > sl->hit_cnt * N + N // if true sl->state is evicted
+ *
+ * Currently N is set to 64, which allows for 6 variables in this test.
+ */
+ asm volatile (
+ "r6 = 0;" /* a */
+ "r7 = 0;" /* b */
+ "r8 = 0;" /* c */
+ "*(u64 *)(r10 - 24) = r6;" /* d */
+ "*(u64 *)(r10 - 32) = r6;" /* e */
+ "*(u64 *)(r10 - 40) = r6;" /* f */
+ "r9 = 0;" /* sum */
+ "r1 = r10;"
+ "r1 += -8;"
+ "r2 = 0;"
+ "r3 = 10;"
+ "call %[bpf_iter_num_new];"
+ "loop_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_next];"
+ "if r0 == 0 goto loop_end_%=;"
+
+ "*(u64 *)(r10 - 16) = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "r6 = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "r7 = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "r8 = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "*(u64 *)(r10 - 24) = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "*(u64 *)(r10 - 32) = r0;"
+
+ "r1 = %[amap] ll;"
+ "r2 = r10;"
+ "r2 += -16;"
+ "call %[bpf_map_lookup_elem];"
+ "*(u64 *)(r10 - 40) = r0;"
+
+ "if r6 == 0 goto +1;"
+ "r9 += 1;"
+ "if r7 == 0 goto +1;"
+ "r9 += 1;"
+ "if r8 == 0 goto +1;"
+ "r9 += 1;"
+ "r0 = *(u64 *)(r10 - 24);"
+ "if r0 == 0 goto +1;"
+ "r9 += 1;"
+ "r0 = *(u64 *)(r10 - 32);"
+ "if r0 == 0 goto +1;"
+ "r9 += 1;"
+ "r0 = *(u64 *)(r10 - 40);"
+ "if r0 == 0 goto +1;"
+ "r9 += 1;"
+
+ "goto loop_%=;"
+ "loop_end_%=:"
+ "r1 = r10;"
+ "r1 += -8;"
+ "call %[bpf_iter_num_destroy];"
+ "r0 = 0;"
+ "exit;"
+ :
+ : __imm(bpf_map_lookup_elem),
+ __imm(bpf_iter_num_new),
+ __imm(bpf_iter_num_next),
+ __imm(bpf_iter_num_destroy),
+ __imm_addr(amap)
+ : __clobber_all
+ );
+}
+
char _license[] SEC("license") = "GPL";
diff --git a/tools/testing/selftests/bpf/progs/iters_task_vma.c b/tools/testing/selftests/bpf/progs/iters_task_vma.c
index 44edecfdfaee..e085a51d153e 100644
--- a/tools/testing/selftests/bpf/progs/iters_task_vma.c
+++ b/tools/testing/selftests/bpf/progs/iters_task_vma.c
@@ -30,6 +30,7 @@ int iter_task_vma_for_each(const void *ctx)
bpf_for_each(task_vma, vma, task, 0) {
if (seen >= 1000)
break;
+ barrier_var(seen);
vm_ranges[seen].vm_start = vma->vm_start;
vm_ranges[seen].vm_end = vma->vm_end;