summaryrefslogtreecommitdiff
path: root/drivers/misc/habanalabs/common/firmware_if.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/habanalabs/common/firmware_if.c')
-rw-r--r--drivers/misc/habanalabs/common/firmware_if.c3171
1 files changed, 0 insertions, 3171 deletions
diff --git a/drivers/misc/habanalabs/common/firmware_if.c b/drivers/misc/habanalabs/common/firmware_if.c
deleted file mode 100644
index eb000e035026..000000000000
--- a/drivers/misc/habanalabs/common/firmware_if.c
+++ /dev/null
@@ -1,3171 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-
-/*
- * Copyright 2016-2022 HabanaLabs, Ltd.
- * All Rights Reserved.
- */
-
-#include "habanalabs.h"
-#include "../include/common/hl_boot_if.h"
-
-#include <linux/firmware.h>
-#include <linux/crc32.h>
-#include <linux/slab.h>
-#include <linux/ctype.h>
-#include <linux/vmalloc.h>
-
-#include <trace/events/habanalabs.h>
-
-#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
-
-static char *comms_cmd_str_arr[COMMS_INVLD_LAST] = {
- [COMMS_NOOP] = __stringify(COMMS_NOOP),
- [COMMS_CLR_STS] = __stringify(COMMS_CLR_STS),
- [COMMS_RST_STATE] = __stringify(COMMS_RST_STATE),
- [COMMS_PREP_DESC] = __stringify(COMMS_PREP_DESC),
- [COMMS_DATA_RDY] = __stringify(COMMS_DATA_RDY),
- [COMMS_EXEC] = __stringify(COMMS_EXEC),
- [COMMS_RST_DEV] = __stringify(COMMS_RST_DEV),
- [COMMS_GOTO_WFE] = __stringify(COMMS_GOTO_WFE),
- [COMMS_SKIP_BMC] = __stringify(COMMS_SKIP_BMC),
- [COMMS_PREP_DESC_ELBI] = __stringify(COMMS_PREP_DESC_ELBI),
-};
-
-static char *comms_sts_str_arr[COMMS_STS_INVLD_LAST] = {
- [COMMS_STS_NOOP] = __stringify(COMMS_STS_NOOP),
- [COMMS_STS_ACK] = __stringify(COMMS_STS_ACK),
- [COMMS_STS_OK] = __stringify(COMMS_STS_OK),
- [COMMS_STS_ERR] = __stringify(COMMS_STS_ERR),
- [COMMS_STS_VALID_ERR] = __stringify(COMMS_STS_VALID_ERR),
- [COMMS_STS_TIMEOUT_ERR] = __stringify(COMMS_STS_TIMEOUT_ERR),
-};
-
-static char *extract_fw_ver_from_str(const char *fw_str)
-{
- char *str, *fw_ver, *whitespace;
- u32 ver_offset;
-
- fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
- if (!fw_ver)
- return NULL;
-
- str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
- if (!str)
- goto free_fw_ver;
-
- /* Skip the fw- part */
- str += 3;
- ver_offset = str - fw_str;
-
- /* Copy until the next whitespace */
- whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
- if (!whitespace)
- goto free_fw_ver;
-
- strscpy(fw_ver, str, whitespace - str + 1);
-
- return fw_ver;
-
-free_fw_ver:
- kfree(fw_ver);
- return NULL;
-}
-
-static int extract_fw_sub_versions(struct hl_device *hdev, char *preboot_ver)
-{
- char major[8], minor[8], *first_dot, *second_dot;
- int rc;
-
- first_dot = strnstr(preboot_ver, ".", 10);
- if (first_dot) {
- strscpy(major, preboot_ver, first_dot - preboot_ver + 1);
- rc = kstrtou32(major, 10, &hdev->fw_major_version);
- } else {
- rc = -EINVAL;
- }
-
- if (rc) {
- dev_err(hdev->dev, "Error %d parsing preboot major version\n", rc);
- goto out;
- }
-
- /* skip the first dot */
- first_dot++;
-
- second_dot = strnstr(first_dot, ".", 10);
- if (second_dot) {
- strscpy(minor, first_dot, second_dot - first_dot + 1);
- rc = kstrtou32(minor, 10, &hdev->fw_minor_version);
- } else {
- rc = -EINVAL;
- }
-
- if (rc)
- dev_err(hdev->dev, "Error %d parsing preboot minor version\n", rc);
-
-out:
- kfree(preboot_ver);
- return rc;
-}
-
-static int hl_request_fw(struct hl_device *hdev,
- const struct firmware **firmware_p,
- const char *fw_name)
-{
- size_t fw_size;
- int rc;
-
- rc = request_firmware(firmware_p, fw_name, hdev->dev);
- if (rc) {
- dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
- fw_name, rc);
- goto out;
- }
-
- fw_size = (*firmware_p)->size;
- if ((fw_size % 4) != 0) {
- dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
- fw_name, fw_size);
- rc = -EINVAL;
- goto release_fw;
- }
-
- dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
-
- if (fw_size > FW_FILE_MAX_SIZE) {
- dev_err(hdev->dev,
- "FW file size %zu exceeds maximum of %u bytes\n",
- fw_size, FW_FILE_MAX_SIZE);
- rc = -EINVAL;
- goto release_fw;
- }
-
- return 0;
-
-release_fw:
- release_firmware(*firmware_p);
-out:
- return rc;
-}
-
-/**
- * hl_release_firmware() - release FW
- *
- * @fw: fw descriptor
- *
- * note: this inline function added to serve as a comprehensive mirror for the
- * hl_request_fw function.
- */
-static inline void hl_release_firmware(const struct firmware *fw)
-{
- release_firmware(fw);
-}
-
-/**
- * hl_fw_copy_fw_to_device() - copy FW to device
- *
- * @hdev: pointer to hl_device structure.
- * @fw: fw descriptor
- * @dst: IO memory mapped address space to copy firmware to
- * @src_offset: offset in src FW to copy from
- * @size: amount of bytes to copy (0 to copy the whole binary)
- *
- * actual copy of FW binary data to device, shared by static and dynamic loaders
- */
-static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
- const struct firmware *fw, void __iomem *dst,
- u32 src_offset, u32 size)
-{
- const void *fw_data;
-
- /* size 0 indicates to copy the whole file */
- if (!size)
- size = fw->size;
-
- if (src_offset + size > fw->size) {
- dev_err(hdev->dev,
- "size to copy(%u) and offset(%u) are invalid\n",
- size, src_offset);
- return -EINVAL;
- }
-
- fw_data = (const void *) fw->data;
-
- memcpy_toio(dst, fw_data + src_offset, size);
- return 0;
-}
-
-/**
- * hl_fw_copy_msg_to_device() - copy message to device
- *
- * @hdev: pointer to hl_device structure.
- * @msg: message
- * @dst: IO memory mapped address space to copy firmware to
- * @src_offset: offset in src message to copy from
- * @size: amount of bytes to copy (0 to copy the whole binary)
- *
- * actual copy of message data to device.
- */
-static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
- struct lkd_msg_comms *msg, void __iomem *dst,
- u32 src_offset, u32 size)
-{
- void *msg_data;
-
- /* size 0 indicates to copy the whole file */
- if (!size)
- size = sizeof(struct lkd_msg_comms);
-
- if (src_offset + size > sizeof(struct lkd_msg_comms)) {
- dev_err(hdev->dev,
- "size to copy(%u) and offset(%u) are invalid\n",
- size, src_offset);
- return -EINVAL;
- }
-
- msg_data = (void *) msg;
-
- memcpy_toio(dst, msg_data + src_offset, size);
-
- return 0;
-}
-
-/**
- * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
- *
- * @hdev: pointer to hl_device structure.
- * @fw_name: the firmware image name
- * @dst: IO memory mapped address space to copy firmware to
- * @src_offset: offset in src FW to copy from
- * @size: amount of bytes to copy (0 to copy the whole binary)
- *
- * Copy fw code from firmware file to device memory.
- *
- * Return: 0 on success, non-zero for failure.
- */
-int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
- void __iomem *dst, u32 src_offset, u32 size)
-{
- const struct firmware *fw;
- int rc;
-
- rc = hl_request_fw(hdev, &fw, fw_name);
- if (rc)
- return rc;
-
- rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
-
- hl_release_firmware(fw);
- return rc;
-}
-
-int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
-{
- struct cpucp_packet pkt = {};
-
- pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.value = cpu_to_le64(value);
-
- return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
-}
-
-int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
- u16 len, u32 timeout, u64 *result)
-{
- struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct cpucp_packet *pkt;
- dma_addr_t pkt_dma_addr;
- struct hl_bd *sent_bd;
- u32 tmp, expected_ack_val, pi, opcode;
- int rc;
-
- pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr);
- if (!pkt) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for packet to CPU\n");
- return -ENOMEM;
- }
-
- memcpy(pkt, msg, len);
-
- mutex_lock(&hdev->send_cpu_message_lock);
-
- /* CPU-CP messages can be sent during soft-reset */
- if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
- rc = 0;
- goto out;
- }
-
- if (hdev->device_cpu_disabled) {
- rc = -EIO;
- goto out;
- }
-
- /* set fence to a non valid value */
- pkt->fence = cpu_to_le32(UINT_MAX);
- pi = queue->pi;
-
- /*
- * The CPU queue is a synchronous queue with an effective depth of
- * a single entry (although it is allocated with room for multiple
- * entries). We lock on it using 'send_cpu_message_lock' which
- * serializes accesses to the CPU queue.
- * Which means that we don't need to lock the access to the entire H/W
- * queues module when submitting a JOB to the CPU queue.
- */
- hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
-
- if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
- expected_ack_val = queue->pi;
- else
- expected_ack_val = CPUCP_PACKET_FENCE_VAL;
-
- rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
- (tmp == expected_ack_val), 1000,
- timeout, true);
-
- hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
-
- if (rc == -ETIMEDOUT) {
- /* If FW performed reset just before sending it a packet, we will get a timeout.
- * This is expected behavior, hence no need for error message.
- */
- if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset)
- dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
- tmp);
- else
- dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
- hdev->device_cpu_disabled = true;
- goto out;
- }
-
- tmp = le32_to_cpu(pkt->ctl);
-
- rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
- if (rc) {
- opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
-
- if (!prop->supports_advanced_cpucp_rc) {
- dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
- rc = -EIO;
- goto scrub_descriptor;
- }
-
- switch (rc) {
- case cpucp_packet_invalid:
- dev_err(hdev->dev,
- "CPU packet %d is not supported by F/W\n", opcode);
- break;
- case cpucp_packet_fault:
- dev_err(hdev->dev,
- "F/W failed processing CPU packet %d\n", opcode);
- break;
- case cpucp_packet_invalid_pkt:
- dev_dbg(hdev->dev,
- "CPU packet %d is not supported by F/W\n", opcode);
- break;
- case cpucp_packet_invalid_params:
- dev_err(hdev->dev,
- "F/W reports invalid parameters for CPU packet %d\n", opcode);
- break;
-
- default:
- dev_err(hdev->dev,
- "Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
- }
-
- /* propagate the return code from the f/w to the callers who want to check it */
- if (result)
- *result = rc;
-
- rc = -EIO;
-
- } else if (result) {
- *result = le64_to_cpu(pkt->result);
- }
-
-scrub_descriptor:
- /* Scrub previous buffer descriptor 'ctl' field which contains the
- * previous PI value written during packet submission.
- * We must do this or else F/W can read an old value upon queue wraparound.
- */
- sent_bd = queue->kernel_address;
- sent_bd += hl_pi_2_offset(pi);
- sent_bd->ctl = cpu_to_le32(UINT_MAX);
-
-out:
- mutex_unlock(&hdev->send_cpu_message_lock);
-
- hl_cpu_accessible_dma_pool_free(hdev, len, pkt);
-
- return rc;
-}
-
-int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
-{
- struct cpucp_packet pkt;
- u64 result;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.value = cpu_to_le64(event_type);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- 0, &result);
-
- if (rc)
- dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
-
- return rc;
-}
-
-int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
- size_t irq_arr_size)
-{
- struct cpucp_unmask_irq_arr_packet *pkt;
- size_t total_pkt_size;
- u64 result;
- int rc;
-
- total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
- irq_arr_size;
-
- /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
- total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
-
- /* total_pkt_size is casted to u16 later on */
- if (total_pkt_size > USHRT_MAX) {
- dev_err(hdev->dev, "too many elements in IRQ array\n");
- return -EINVAL;
- }
-
- pkt = kzalloc(total_pkt_size, GFP_KERNEL);
- if (!pkt)
- return -ENOMEM;
-
- pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
- memcpy(&pkt->irqs, irq_arr, irq_arr_size);
-
- pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
- total_pkt_size, 0, &result);
-
- if (rc)
- dev_err(hdev->dev, "failed to unmask IRQ array\n");
-
- kfree(pkt);
-
- return rc;
-}
-
-int hl_fw_test_cpu_queue(struct hl_device *hdev)
-{
- struct cpucp_packet test_pkt = {};
- u64 result;
- int rc;
-
- test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
- sizeof(test_pkt), 0, &result);
-
- if (!rc) {
- if (result != CPUCP_PACKET_FENCE_VAL)
- dev_err(hdev->dev,
- "CPU queue test failed (%#08llx)\n", result);
- } else {
- dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
- }
-
- return rc;
-}
-
-void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
- dma_addr_t *dma_handle)
-{
- u64 kernel_addr;
-
- kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
-
- *dma_handle = hdev->cpu_accessible_dma_address +
- (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
-
- return (void *) (uintptr_t) kernel_addr;
-}
-
-void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
- void *vaddr)
-{
- gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
- size);
-}
-
-int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
-{
- struct cpucp_packet pkt;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.value = cpu_to_le64(open);
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
- if (rc)
- dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
-
- return rc;
-}
-
-int hl_fw_send_heartbeat(struct hl_device *hdev)
-{
- struct cpucp_packet hb_pkt;
- u64 result;
- int rc;
-
- memset(&hb_pkt, 0, sizeof(hb_pkt));
- hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
- sizeof(hb_pkt), 0, &result);
-
- if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
- return -EIO;
-
- if (le32_to_cpu(hb_pkt.status_mask) &
- CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
- dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
- rc = -EIO;
- }
-
- return rc;
-}
-
-static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
- u32 sts_val)
-{
- bool err_exists = false;
-
- if (!(err_val & CPU_BOOT_ERR0_ENABLED))
- return false;
-
- if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
- dev_err(hdev->dev,
- "Device boot error - DRAM initialization failed\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
- dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
- dev_err(hdev->dev,
- "Device boot error - Thermal Sensor initialization failed\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
- if (hdev->bmc_enable) {
- dev_err(hdev->dev,
- "Device boot error - Skipped waiting for BMC\n");
- err_exists = true;
- } else {
- dev_info(hdev->dev,
- "Device boot message - Skipped waiting for BMC\n");
- /* This is an info so we don't want it to disable the
- * device
- */
- err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
- }
- }
-
- if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
- dev_err(hdev->dev,
- "Device boot error - Serdes data from BMC not available\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
- dev_err(hdev->dev,
- "Device boot error - NIC F/W initialization failed\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
- dev_err(hdev->dev,
- "Device boot warning - security not ready\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
- dev_err(hdev->dev, "Device boot error - security failure\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
- dev_err(hdev->dev, "Device boot error - eFuse failure\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
- dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
- dev_err(hdev->dev, "Device boot error - PLL failure\n");
- err_exists = true;
- }
-
- if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
- /* Ignore this bit, don't prevent driver loading */
- dev_dbg(hdev->dev, "device unusable status is set\n");
- err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
- }
-
- if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) {
- dev_err(hdev->dev, "Device boot error - binning failure\n");
- err_exists = true;
- }
-
- if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
- dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
-
- if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
- dev_err(hdev->dev, "Device boot error - EEPROM failure detected\n");
- err_exists = true;
- }
-
- /* All warnings should go here in order not to reach the unknown error validation */
- if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
- dev_warn(hdev->dev,
- "Device boot warning - Skipped DRAM initialization\n");
- /* This is a warning so we don't want it to disable the
- * device
- */
- err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
- }
-
- if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
- dev_warn(hdev->dev,
- "Device boot warning - Failed to load preboot primary image\n");
- /* This is a warning so we don't want it to disable the
- * device as we have a secondary preboot image
- */
- err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
- }
-
- if (err_val & CPU_BOOT_ERR0_TPM_FAIL) {
- dev_warn(hdev->dev,
- "Device boot warning - TPM failure\n");
- /* This is a warning so we don't want it to disable the
- * device
- */
- err_val &= ~CPU_BOOT_ERR0_TPM_FAIL;
- }
-
- if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
- dev_err(hdev->dev,
- "Device boot error - unknown ERR0 error 0x%08x\n", err_val);
- err_exists = true;
- }
-
- /* return error only if it's in the predefined mask */
- if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
- lower_32_bits(hdev->boot_error_status_mask)))
- return true;
-
- return false;
-}
-
-/* placeholder for ERR1 as no errors defined there yet */
-static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
- u32 sts_val)
-{
- /*
- * keep this variable to preserve the logic of the function.
- * this way it would require less modifications when error will be
- * added to DEV_ERR1
- */
- bool err_exists = false;
-
- if (!(err_val & CPU_BOOT_ERR1_ENABLED))
- return false;
-
- if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
- dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
-
- if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
- dev_err(hdev->dev,
- "Device boot error - unknown ERR1 error 0x%08x\n",
- err_val);
- err_exists = true;
- }
-
- /* return error only if it's in the predefined mask */
- if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
- upper_32_bits(hdev->boot_error_status_mask)))
- return true;
-
- return false;
-}
-
-static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
- u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
- u32 cpu_boot_dev_status1_reg)
-{
- u32 err_val, status_val;
- bool err_exists = false;
-
- /* Some of the firmware status codes are deprecated in newer f/w
- * versions. In those versions, the errors are reported
- * in different registers. Therefore, we need to check those
- * registers and print the exact errors. Moreover, there
- * may be multiple errors, so we need to report on each error
- * separately. Some of the error codes might indicate a state
- * that is not an error per-se, but it is an error in production
- * environment
- */
- err_val = RREG32(boot_err0_reg);
- status_val = RREG32(cpu_boot_dev_status0_reg);
- err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
-
- err_val = RREG32(boot_err1_reg);
- status_val = RREG32(cpu_boot_dev_status1_reg);
- err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
-
- if (err_exists)
- return -EIO;
-
- return 0;
-}
-
-int hl_fw_cpucp_info_get(struct hl_device *hdev,
- u32 sts_boot_dev_sts0_reg,
- u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
- u32 boot_err1_reg)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct cpucp_packet pkt = {};
- dma_addr_t cpucp_info_dma_addr;
- void *cpucp_info_cpu_addr;
- char *kernel_ver;
- u64 result;
- int rc;
-
- cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
- &cpucp_info_dma_addr);
- if (!cpucp_info_cpu_addr) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for CPU-CP info packet\n");
- return -ENOMEM;
- }
-
- memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
- pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP info pkt, error %d\n", rc);
- goto out;
- }
-
- rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
- sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
- if (rc) {
- dev_err(hdev->dev, "Errors in device boot\n");
- goto out;
- }
-
- memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
- sizeof(prop->cpucp_info));
-
- rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to build hwmon channel info, error %d\n", rc);
- rc = -EFAULT;
- goto out;
- }
-
- kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
- if (kernel_ver) {
- dev_info(hdev->dev, "Linux version %s", kernel_ver);
- kfree(kernel_ver);
- }
-
- /* assume EQ code doesn't need to check eqe index */
- hdev->event_queue.check_eqe_index = false;
-
- /* Read FW application security bits again */
- if (prop->fw_cpu_boot_dev_sts0_valid) {
- prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
- if (prop->fw_app_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
- hdev->event_queue.check_eqe_index = true;
- }
-
- if (prop->fw_cpu_boot_dev_sts1_valid)
- prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
-
-out:
- hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
-
- return rc;
-}
-
-static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
-{
- struct cpucp_array_data_packet *pkt;
- size_t total_pkt_size, data_size;
- u64 result;
- int rc;
-
- /* skip sending this info for unsupported ASICs */
- if (!hdev->asic_funcs->get_msi_info)
- return 0;
-
- data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
- total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
-
- /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
- total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
-
- /* total_pkt_size is casted to u16 later on */
- if (total_pkt_size > USHRT_MAX) {
- dev_err(hdev->dev, "CPUCP array data is too big\n");
- return -EINVAL;
- }
-
- pkt = kzalloc(total_pkt_size, GFP_KERNEL);
- if (!pkt)
- return -ENOMEM;
-
- pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
-
- memset((void *) &pkt->data, 0xFF, data_size);
- hdev->asic_funcs->get_msi_info(pkt->data);
-
- pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
- total_pkt_size, 0, &result);
-
- /*
- * in case packet result is invalid it means that FW does not support
- * this feature and will use default/hard coded MSI values. no reason
- * to stop the boot
- */
- if (rc && result == cpucp_packet_invalid)
- rc = 0;
-
- if (rc)
- dev_err(hdev->dev, "failed to send CPUCP array data\n");
-
- kfree(pkt);
-
- return rc;
-}
-
-int hl_fw_cpucp_handshake(struct hl_device *hdev,
- u32 sts_boot_dev_sts0_reg,
- u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
- u32 boot_err1_reg)
-{
- int rc;
-
- rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
- sts_boot_dev_sts1_reg, boot_err0_reg,
- boot_err1_reg);
- if (rc)
- return rc;
-
- return hl_fw_send_msi_info_msg(hdev);
-}
-
-int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
-{
- struct cpucp_packet pkt = {};
- void *eeprom_info_cpu_addr;
- dma_addr_t eeprom_info_dma_addr;
- u64 result;
- int rc;
-
- eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
- &eeprom_info_dma_addr);
- if (!eeprom_info_cpu_addr) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
- return -ENOMEM;
- }
-
- memset(eeprom_info_cpu_addr, 0, max_size);
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
- pkt.data_max_size = cpu_to_le32(max_size);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
-
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP EEPROM packet, error %d\n",
- rc);
- goto out;
- }
-
- /* result contains the actual size */
- memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
-
-out:
- hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
-
- return rc;
-}
-
-int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
-{
- struct cpucp_monitor_dump *mon_dump_cpu_addr;
- dma_addr_t mon_dump_dma_addr;
- struct cpucp_packet pkt = {};
- size_t data_size;
- __le32 *src_ptr;
- u32 *dst_ptr;
- u64 result;
- int i, rc;
-
- data_size = sizeof(struct cpucp_monitor_dump);
- mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
- if (!mon_dump_cpu_addr) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
- return -ENOMEM;
- }
-
- memset(mon_dump_cpu_addr, 0, data_size);
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(mon_dump_dma_addr);
- pkt.data_max_size = cpu_to_le32(data_size);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
- goto out;
- }
-
- /* result contains the actual size */
- src_ptr = (__le32 *) mon_dump_cpu_addr;
- dst_ptr = data;
- for (i = 0; i < (data_size / sizeof(u32)); i++) {
- *dst_ptr = le32_to_cpu(*src_ptr);
- src_ptr++;
- dst_ptr++;
- }
-
-out:
- hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
-
- return rc;
-}
-
-int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
- struct hl_info_pci_counters *counters)
-{
- struct cpucp_packet pkt = {};
- u64 result;
- int rc;
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- /* Fetch PCI rx counter */
- pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
- return rc;
- }
- counters->rx_throughput = result;
-
- memset(&pkt, 0, sizeof(pkt));
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- /* Fetch PCI tx counter */
- pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
- return rc;
- }
- counters->tx_throughput = result;
-
- /* Fetch PCI replay counter */
- memset(&pkt, 0, sizeof(pkt));
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
- return rc;
- }
- counters->replay_cnt = (u32) result;
-
- return rc;
-}
-
-int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
-{
- struct cpucp_packet pkt = {};
- u64 result;
- int rc;
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CpuCP total energy pkt, error %d\n",
- rc);
- return rc;
- }
-
- *total_energy = result;
-
- return rc;
-}
-
-int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
- enum pll_index *pll_index)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u8 pll_byte, pll_bit_off;
- bool dynamic_pll;
- int fw_pll_idx;
-
- dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_DYN_PLL_EN);
-
- if (!dynamic_pll) {
- /*
- * in case we are working with legacy FW (each asic has unique
- * PLL numbering) use the driver based index as they are
- * aligned with fw legacy numbering
- */
- *pll_index = input_pll_index;
- return 0;
- }
-
- /* retrieve a FW compatible PLL index based on
- * ASIC specific user request
- */
- fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
- if (fw_pll_idx < 0) {
- dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
- input_pll_index, fw_pll_idx);
- return -EINVAL;
- }
-
- /* PLL map is a u8 array */
- pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
- pll_bit_off = fw_pll_idx & 0x7;
-
- if (!(pll_byte & BIT(pll_bit_off))) {
- dev_err(hdev->dev, "PLL index %d is not supported\n",
- fw_pll_idx);
- return -EINVAL;
- }
-
- *pll_index = fw_pll_idx;
-
- return 0;
-}
-
-int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
- u16 *pll_freq_arr)
-{
- struct cpucp_packet pkt;
- enum pll_index used_pll_idx;
- u64 result;
- int rc;
-
- rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
- if (rc)
- return rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
- return rc;
- }
-
- pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
- pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
- pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
- pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
-
- return 0;
-}
-
-int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
-{
- struct cpucp_packet pkt;
- u64 result;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
- return rc;
- }
-
- *power = result;
-
- return rc;
-}
-
-int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
- struct cpucp_hbm_row_info *info)
-{
- struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
- dma_addr_t cpucp_repl_rows_info_dma_addr;
- struct cpucp_packet pkt = {};
- u64 result;
- int rc;
-
- cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
- sizeof(struct cpucp_hbm_row_info),
- &cpucp_repl_rows_info_dma_addr);
- if (!cpucp_repl_rows_info_cpu_addr) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
- return -ENOMEM;
- }
-
- memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
- pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
- goto out;
- }
-
- memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
-
-out:
- hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
- cpucp_repl_rows_info_cpu_addr);
-
- return rc;
-}
-
-int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
-{
- struct cpucp_packet pkt;
- u64 result;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
- goto out;
- }
-
- *pend_rows_num = (u32) result;
-out:
- return rc;
-}
-
-int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
-{
- struct cpucp_packet pkt;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.value = cpu_to_le64(asid);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
- if (rc)
- dev_err(hdev->dev,
- "Failed on ASID configuration request for engine core, error %d\n",
- rc);
-
- return rc;
-}
-
-void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
-{
- struct static_fw_load_mgr *static_loader =
- &hdev->fw_loader.static_loader;
- int rc;
-
- if (hdev->asic_prop.dynamic_fw_load) {
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
- COMMS_RST_DEV, 0, false,
- hdev->fw_loader.cpu_timeout);
- if (rc)
- dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
- } else {
- WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
- }
-}
-
-void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
-{
- struct static_fw_load_mgr *static_loader =
- &hdev->fw_loader.static_loader;
- int rc;
-
- if (hdev->device_cpu_is_halted)
- return;
-
- /* Stop device CPU to make sure nothing bad happens */
- if (hdev->asic_prop.dynamic_fw_load) {
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
- COMMS_GOTO_WFE, 0, true,
- hdev->fw_loader.cpu_timeout);
- if (rc)
- dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
- } else {
- WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
- msleep(static_loader->cpu_reset_wait_msec);
-
- /* Must clear this register in order to prevent preboot
- * from reading WFE after reboot
- */
- WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
- }
-
- hdev->device_cpu_is_halted = true;
-}
-
-static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
-{
- /* Some of the status codes below are deprecated in newer f/w
- * versions but we keep them here for backward compatibility
- */
- switch (status) {
- case CPU_BOOT_STATUS_NA:
- dev_err(hdev->dev,
- "Device boot progress - BTL/ROM did NOT run\n");
- break;
- case CPU_BOOT_STATUS_IN_WFE:
- dev_err(hdev->dev,
- "Device boot progress - Stuck inside WFE loop\n");
- break;
- case CPU_BOOT_STATUS_IN_BTL:
- dev_err(hdev->dev,
- "Device boot progress - Stuck in BTL\n");
- break;
- case CPU_BOOT_STATUS_IN_PREBOOT:
- dev_err(hdev->dev,
- "Device boot progress - Stuck in Preboot\n");
- break;
- case CPU_BOOT_STATUS_IN_SPL:
- dev_err(hdev->dev,
- "Device boot progress - Stuck in SPL\n");
- break;
- case CPU_BOOT_STATUS_IN_UBOOT:
- dev_err(hdev->dev,
- "Device boot progress - Stuck in u-boot\n");
- break;
- case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
- dev_err(hdev->dev,
- "Device boot progress - DRAM initialization failed\n");
- break;
- case CPU_BOOT_STATUS_UBOOT_NOT_READY:
- dev_err(hdev->dev,
- "Device boot progress - Cannot boot\n");
- break;
- case CPU_BOOT_STATUS_TS_INIT_FAIL:
- dev_err(hdev->dev,
- "Device boot progress - Thermal Sensor initialization failed\n");
- break;
- case CPU_BOOT_STATUS_SECURITY_READY:
- dev_err(hdev->dev,
- "Device boot progress - Stuck in preboot after security initialization\n");
- break;
- default:
- dev_err(hdev->dev,
- "Device boot progress - Invalid status code %d\n",
- status);
- break;
- }
-}
-
-int hl_fw_wait_preboot_ready(struct hl_device *hdev)
-{
- struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
- u32 status;
- int rc;
-
- /* Need to check two possible scenarios:
- *
- * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
- * the preboot is waiting for the boot fit
- *
- * All other status values - for older firmwares where the uboot was
- * loaded from the FLASH
- */
- rc = hl_poll_timeout(
- hdev,
- pre_fw_load->cpu_boot_status_reg,
- status,
- (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
- (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
- (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
- hdev->fw_poll_interval_usec,
- pre_fw_load->wait_for_preboot_timeout);
-
- if (rc) {
- dev_err(hdev->dev, "CPU boot ready status timeout\n");
- detect_cpu_boot_status(hdev, status);
-
- /* If we read all FF, then something is totally wrong, no point
- * of reading specific errors
- */
- if (status != -1)
- fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
- pre_fw_load->boot_err1_reg,
- pre_fw_load->sts_boot_dev_sts0_reg,
- pre_fw_load->sts_boot_dev_sts1_reg);
- return -EIO;
- }
-
- hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
-
- return 0;
-}
-
-static int hl_fw_read_preboot_caps(struct hl_device *hdev)
-{
- struct pre_fw_load_props *pre_fw_load;
- struct asic_fixed_properties *prop;
- u32 reg_val;
- int rc;
-
- prop = &hdev->asic_prop;
- pre_fw_load = &hdev->fw_loader.pre_fw_load;
-
- rc = hl_fw_wait_preboot_ready(hdev);
- if (rc)
- return rc;
-
- /*
- * the registers DEV_STS* contain FW capabilities/features.
- * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
- * is set.
- * In the first read of this register we store the value of this
- * register ONLY if the register is enabled (which will be propagated
- * to next stages) and also mark the register as valid.
- * In case it is not enabled the stored value will be left 0- all
- * caps/features are off
- */
- reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
- if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
- prop->fw_cpu_boot_dev_sts0_valid = true;
- prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
- }
-
- reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
- if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
- prop->fw_cpu_boot_dev_sts1_valid = true;
- prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
- }
-
- prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
-
- /* initialize FW loader once we know what load protocol is used */
- hdev->asic_funcs->init_firmware_loader(hdev);
-
- dev_dbg(hdev->dev, "Attempting %s FW load\n",
- prop->dynamic_fw_load ? "dynamic" : "legacy");
- return 0;
-}
-
-static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
- enum hl_fw_component fwc)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct fw_load_mgr *fw_loader = &hdev->fw_loader;
- struct static_fw_load_mgr *static_loader;
- char *dest, *boot_ver, *preboot_ver;
- u32 ver_off, limit;
- const char *name;
- char btl_ver[32];
-
- static_loader = &hdev->fw_loader.static_loader;
-
- switch (fwc) {
- case FW_COMP_BOOT_FIT:
- ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
- dest = prop->uboot_ver;
- name = "Boot-fit";
- limit = static_loader->boot_fit_version_max_off;
- break;
- case FW_COMP_PREBOOT:
- ver_off = RREG32(static_loader->preboot_version_offset_reg);
- dest = prop->preboot_ver;
- name = "Preboot";
- limit = static_loader->preboot_version_max_off;
- break;
- default:
- dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
- return -EIO;
- }
-
- ver_off &= static_loader->sram_offset_mask;
-
- if (ver_off < limit) {
- memcpy_fromio(dest,
- hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
- VERSION_MAX_LEN);
- } else {
- dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
- name, ver_off);
- strscpy(dest, "unavailable", VERSION_MAX_LEN);
- return -EIO;
- }
-
- if (fwc == FW_COMP_BOOT_FIT) {
- boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
- if (boot_ver) {
- dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
- kfree(boot_ver);
- }
- } else if (fwc == FW_COMP_PREBOOT) {
- preboot_ver = strnstr(prop->preboot_ver, "Preboot",
- VERSION_MAX_LEN);
- if (preboot_ver && preboot_ver != prop->preboot_ver) {
- strscpy(btl_ver, prop->preboot_ver,
- min((int) (preboot_ver - prop->preboot_ver),
- 31));
- dev_info(hdev->dev, "%s\n", btl_ver);
- }
-
- preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
- if (preboot_ver) {
- dev_info(hdev->dev, "preboot version %s\n",
- preboot_ver);
- kfree(preboot_ver);
- }
- }
-
- return 0;
-}
-
-/**
- * hl_fw_preboot_update_state - update internal data structures during
- * handshake with preboot
- *
- *
- * @hdev: pointer to the habanalabs device structure
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static void hl_fw_preboot_update_state(struct hl_device *hdev)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
-
- cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
- cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
-
- /* We read boot_dev_sts registers multiple times during boot:
- * 1. preboot - a. Check whether the security status bits are valid
- * b. Check whether fw security is enabled
- * c. Check whether hard reset is done by preboot
- * 2. boot cpu - a. Fetch boot cpu security status
- * b. Check whether hard reset is done by boot cpu
- * 3. FW application - a. Fetch fw application security status
- * b. Check whether hard reset is done by fw app
- */
- prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
-
- prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
-
- dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
- cpu_boot_dev_sts0);
-
- dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
- cpu_boot_dev_sts1);
-
- dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
- prop->hard_reset_done_by_fw ? "enabled" : "disabled");
-
- dev_dbg(hdev->dev, "firmware-level security is %s\n",
- prop->fw_security_enabled ? "enabled" : "disabled");
-
- dev_dbg(hdev->dev, "GIC controller is %s\n",
- prop->gic_interrupts_enable ? "enabled" : "disabled");
-}
-
-static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
-{
- int rc;
-
- rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
- if (rc)
- return rc;
-
- return 0;
-}
-
-int hl_fw_read_preboot_status(struct hl_device *hdev)
-{
- int rc;
-
- if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
- return 0;
-
- /* get FW pre-load parameters */
- hdev->asic_funcs->init_firmware_preload_params(hdev);
-
- /*
- * In order to determine boot method (static VS dynamic) we need to
- * read the boot caps register
- */
- rc = hl_fw_read_preboot_caps(hdev);
- if (rc)
- return rc;
-
- hl_fw_preboot_update_state(hdev);
-
- /* no need to read preboot status in dynamic load */
- if (hdev->asic_prop.dynamic_fw_load)
- return 0;
-
- return hl_fw_static_read_preboot_status(hdev);
-}
-
-/* associate string with COMM status */
-static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
- [COMMS_STS_NOOP] = "NOOP",
- [COMMS_STS_ACK] = "ACK",
- [COMMS_STS_OK] = "OK",
- [COMMS_STS_ERR] = "ERR",
- [COMMS_STS_VALID_ERR] = "VALID_ERR",
- [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
-};
-
-/**
- * hl_fw_dynamic_report_error_status - report error status
- *
- * @hdev: pointer to the habanalabs device structure
- * @status: value of FW status register
- * @expected_status: the expected status
- */
-static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
- u32 status,
- enum comms_sts expected_status)
-{
- enum comms_sts comm_status =
- FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
-
- if (comm_status < COMMS_STS_INVLD_LAST)
- dev_err(hdev->dev, "Device status %s, expected status: %s\n",
- hl_dynamic_fw_status_str[comm_status],
- hl_dynamic_fw_status_str[expected_status]);
- else
- dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
- comm_status,
- hl_dynamic_fw_status_str[expected_status]);
-}
-
-/**
- * hl_fw_dynamic_send_cmd - send LKD to FW cmd
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @cmd: LKD to FW cmd code
- * @size: size of next FW component to be loaded (0 if not necessary)
- *
- * LDK to FW exact command layout is defined at struct comms_command.
- * note: the size argument is used only when the next FW component should be
- * loaded, otherwise it shall be 0. the size is used by the FW in later
- * protocol stages and when sending only indicating the amount of memory
- * to be allocated by the FW to receive the next boot component.
- */
-static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- enum comms_cmd cmd, unsigned int size)
-{
- struct cpu_dyn_regs *dyn_regs;
- u32 val;
-
- dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
-
- val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
- val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
-
- trace_habanalabs_comms_send_cmd(hdev->dev, comms_cmd_str_arr[cmd]);
- WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
-}
-
-/**
- * hl_fw_dynamic_extract_fw_response - update the FW response
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @response: FW response
- * @status: the status read from CPU status register
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- struct fw_response *response,
- u32 status)
-{
- response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
- response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
- COMMS_STATUS_OFFSET_ALIGN_SHIFT;
- response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
-
- if ((response->ram_type != COMMS_SRAM) &&
- (response->ram_type != COMMS_DRAM)) {
- dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
- response->ram_type);
- return -EIO;
- }
-
- return 0;
-}
-
-/**
- * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @expected_status: expected status to wait for
- * @timeout: timeout for status wait
- *
- * @return 0 on success, otherwise non-zero error code
- *
- * waiting for status from FW include polling the FW status register until
- * expected status is received or timeout occurs (whatever occurs first).
- */
-static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- enum comms_sts expected_status,
- u32 timeout)
-{
- struct cpu_dyn_regs *dyn_regs;
- u32 status;
- int rc;
-
- dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
-
- trace_habanalabs_comms_wait_status(hdev->dev, comms_sts_str_arr[expected_status]);
-
- /* Wait for expected status */
- rc = hl_poll_timeout(
- hdev,
- le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
- status,
- FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
- hdev->fw_comms_poll_interval_usec,
- timeout);
-
- if (rc) {
- hl_fw_dynamic_report_error_status(hdev, status,
- expected_status);
- return -EIO;
- }
-
- trace_habanalabs_comms_wait_status_done(hdev->dev, comms_sts_str_arr[expected_status]);
-
- /*
- * skip storing FW response for NOOP to preserve the actual desired
- * FW status
- */
- if (expected_status == COMMS_STS_NOOP)
- return 0;
-
- rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
- &fw_loader->dynamic_loader.response,
- status);
- return rc;
-}
-
-/**
- * hl_fw_dynamic_send_clear_cmd - send clear command to FW
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- *
- * @return 0 on success, otherwise non-zero error code
- *
- * after command cycle between LKD to FW CPU (i.e. LKD got an expected status
- * from FW) we need to clear the CPU status register in order to avoid garbage
- * between command cycles.
- * This is done by sending clear command and polling the CPU to LKD status
- * register to hold the status NOOP
- */
-static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
-
- return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
- fw_loader->cpu_timeout);
-}
-
-/**
- * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @cmd: LKD to FW cmd code
- * @size: size of next FW component to be loaded (0 if not necessary)
- * @wait_ok: if true also wait for OK response from FW
- * @timeout: timeout for status wait
- *
- * @return 0 on success, otherwise non-zero error code
- *
- * brief:
- * when sending protocol command we have the following steps:
- * - send clear (clear command and verify clear status register)
- * - send the actual protocol command
- * - wait for ACK on the protocol command
- * - send clear
- * - send NOOP
- * if, in addition, the specific protocol command should wait for OK then:
- * - wait for OK
- * - send clear
- * - send NOOP
- *
- * NOTES:
- * send clear: this is necessary in order to clear the status register to avoid
- * leftovers between command
- * NOOP command: necessary to avoid loop on the clear command by the FW
- */
-int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- enum comms_cmd cmd, unsigned int size,
- bool wait_ok, u32 timeout)
-{
- int rc;
-
- trace_habanalabs_comms_protocol_cmd(hdev->dev, comms_cmd_str_arr[cmd]);
-
- /* first send clear command to clean former commands */
- rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
- if (rc)
- return rc;
-
- /* send the actual command */
- hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
-
- /* wait for ACK for the command */
- rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
- timeout);
- if (rc)
- return rc;
-
- /* clear command to prepare for NOOP command */
- rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
- if (rc)
- return rc;
-
- /* send the actual NOOP command */
- hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
-
- if (!wait_ok)
- return 0;
-
- rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
- timeout);
- if (rc)
- return rc;
-
- /* clear command to prepare for NOOP command */
- rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
- if (rc)
- return rc;
-
- /* send the actual NOOP command */
- hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
-
- return 0;
-}
-
-/**
- * hl_fw_compat_crc32 - CRC compatible with FW
- *
- * @data: pointer to the data
- * @size: size of the data
- *
- * @return the CRC32 result
- *
- * NOTE: kernel's CRC32 differs from standard CRC32 calculation.
- * in order to be aligned we need to flip the bits of both the input
- * initial CRC and kernel's CRC32 result.
- * in addition both sides use initial CRC of 0,
- */
-static u32 hl_fw_compat_crc32(u8 *data, size_t size)
-{
- return ~crc32_le(~((u32)0), data, size);
-}
-
-/**
- * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
- * transfer (image or descriptor) between
- * host and FW
- *
- * @hdev: pointer to the habanalabs device structure
- * @addr: device address of memory transfer
- * @size: memory transfer size
- * @region: PCI memory region
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
- u64 addr, size_t size,
- struct pci_mem_region *region)
-{
- u64 end_addr;
-
- /* now make sure that the memory transfer is within region's bounds */
- end_addr = addr + size;
- if (end_addr >= region->region_base + region->region_size) {
- dev_err(hdev->dev,
- "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
- end_addr);
- return -EIO;
- }
-
- /*
- * now make sure memory transfer is within predefined BAR bounds.
- * this is to make sure we do not need to set the bar (e.g. for DRAM
- * memory transfers)
- */
- if (end_addr >= region->region_base - region->offset_in_bar +
- region->bar_size) {
- dev_err(hdev->dev,
- "FW image beyond PCI BAR bounds\n");
- return -EIO;
- }
-
- return 0;
-}
-
-/**
- * hl_fw_dynamic_validate_descriptor - validate FW descriptor
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @fw_desc: the descriptor from FW
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- struct lkd_fw_comms_desc *fw_desc)
-{
- struct pci_mem_region *region;
- enum pci_region region_id;
- size_t data_size;
- u32 data_crc32;
- u8 *data_ptr;
- u64 addr;
- int rc;
-
- if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
- dev_dbg(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
- fw_desc->header.magic);
-
- if (fw_desc->header.version != HL_COMMS_DESC_VER)
- dev_dbg(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
- fw_desc->header.version);
-
- /*
- * Calc CRC32 of data without header. use the size of the descriptor
- * reported by firmware, without calculating it ourself, to allow adding
- * more fields to the lkd_fw_comms_desc structure.
- * note that no alignment/stride address issues here as all structures
- * are 64 bit padded.
- */
- data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
- data_size = le16_to_cpu(fw_desc->header.size);
-
- data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
- if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
- dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
- data_crc32, fw_desc->header.crc32);
- return -EIO;
- }
-
- /* find memory region to which to copy the image */
- addr = le64_to_cpu(fw_desc->img_addr);
- region_id = hl_get_pci_memory_region(hdev, addr);
- if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
- dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
- return -EIO;
- }
-
- region = &hdev->pci_mem_region[region_id];
-
- /* store the region for the copy stage */
- fw_loader->dynamic_loader.image_region = region;
-
- /*
- * here we know that the start address is valid, now make sure that the
- * image is within region's bounds
- */
- rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
- fw_loader->dynamic_loader.fw_image_size,
- region);
- if (rc) {
- dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
- return rc;
- }
-
- /* here we can mark the descriptor as valid as the content has been validated */
- fw_loader->dynamic_loader.fw_desc_valid = true;
-
- return 0;
-}
-
-static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
- struct fw_response *response,
- struct pci_mem_region *region)
-{
- u64 device_addr;
- int rc;
-
- device_addr = region->region_base + response->ram_offset;
-
- /*
- * validate that the descriptor is within region's bounds
- * Note that as the start address was supplied according to the RAM
- * type- testing only the end address is enough
- */
- rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
- sizeof(struct lkd_fw_comms_desc),
- region);
- return rc;
-}
-
-/*
- * hl_fw_dynamic_read_descriptor_msg - read and show the ascii msg that sent by fw
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_desc: the descriptor from FW
- */
-static void hl_fw_dynamic_read_descriptor_msg(struct hl_device *hdev,
- struct lkd_fw_comms_desc *fw_desc)
-{
- int i;
- char *msg;
-
- for (i = 0 ; i < LKD_FW_ASCII_MSG_MAX ; i++) {
- if (!fw_desc->ascii_msg[i].valid)
- return;
-
- /* force NULL termination */
- msg = fw_desc->ascii_msg[i].msg;
- msg[LKD_FW_ASCII_MSG_MAX_LEN - 1] = '\0';
-
- switch (fw_desc->ascii_msg[i].msg_lvl) {
- case LKD_FW_ASCII_MSG_ERR:
- dev_err(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
- break;
- case LKD_FW_ASCII_MSG_WRN:
- dev_warn(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
- break;
- case LKD_FW_ASCII_MSG_INF:
- dev_info(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
- break;
- default:
- dev_dbg(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
- break;
- }
- }
-}
-
-/**
- * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- struct lkd_fw_comms_desc *fw_desc;
- struct pci_mem_region *region;
- struct fw_response *response;
- void *temp_fw_desc;
- void __iomem *src;
- u16 fw_data_size;
- enum pci_region region_id;
- int rc;
-
- fw_desc = &fw_loader->dynamic_loader.comm_desc;
- response = &fw_loader->dynamic_loader.response;
-
- region_id = (response->ram_type == COMMS_SRAM) ?
- PCI_REGION_SRAM : PCI_REGION_DRAM;
-
- region = &hdev->pci_mem_region[region_id];
-
- rc = hl_fw_dynamic_validate_response(hdev, response, region);
- if (rc) {
- dev_err(hdev->dev,
- "invalid mem transfer request for FW descriptor\n");
- return rc;
- }
-
- /*
- * extract address to copy the descriptor from
- * in addition, as the descriptor value is going to be over-ridden by new data- we mark it
- * as invalid.
- * it will be marked again as valid once validated
- */
- fw_loader->dynamic_loader.fw_desc_valid = false;
- src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
- response->ram_offset;
-
- /*
- * We do the copy of the fw descriptor in 2 phases:
- * 1. copy the header + data info according to our lkd_fw_comms_desc definition.
- * then we're able to read the actual data size provided by fw.
- * this is needed for cases where data in descriptor was changed(add/remove)
- * in embedded specs header file before updating lkd copy of the header file
- * 2. copy descriptor to temporary buffer with aligned size and send it to validation
- */
- memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
- fw_data_size = le16_to_cpu(fw_desc->header.size);
-
- temp_fw_desc = vzalloc(sizeof(struct comms_desc_header) + fw_data_size);
- if (!temp_fw_desc)
- return -ENOMEM;
-
- memcpy_fromio(temp_fw_desc, src, sizeof(struct comms_desc_header) + fw_data_size);
-
- rc = hl_fw_dynamic_validate_descriptor(hdev, fw_loader,
- (struct lkd_fw_comms_desc *) temp_fw_desc);
-
- if (!rc)
- hl_fw_dynamic_read_descriptor_msg(hdev, temp_fw_desc);
-
- vfree(temp_fw_desc);
-
- return rc;
-}
-
-/**
- * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @next_image_size: size to allocate for next FW component
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- size_t next_image_size)
-{
- int rc;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
- next_image_size, true,
- fw_loader->cpu_timeout);
- if (rc)
- return rc;
-
- return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
-}
-
-/**
- * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
- *
- * @hdev: pointer to the habanalabs device structure
- * @fwc: the firmware component
- * @fw_version: fw component's version string
- */
-static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
- enum hl_fw_component fwc,
- const char *fw_version)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- char *preboot_ver, *boot_ver;
- char btl_ver[32];
-
- switch (fwc) {
- case FW_COMP_BOOT_FIT:
- strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
- boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
- if (boot_ver) {
- dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
- kfree(boot_ver);
- }
-
- break;
- case FW_COMP_PREBOOT:
- strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
- preboot_ver = strnstr(prop->preboot_ver, "Preboot",
- VERSION_MAX_LEN);
- if (preboot_ver && preboot_ver != prop->preboot_ver) {
- strscpy(btl_ver, prop->preboot_ver,
- min((int) (preboot_ver - prop->preboot_ver), 31));
- dev_info(hdev->dev, "%s\n", btl_ver);
- }
-
- preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
- if (preboot_ver) {
- int rc;
-
- dev_info(hdev->dev, "preboot version %s\n", preboot_ver);
-
- /* This function takes care of freeing preboot_ver */
- rc = extract_fw_sub_versions(hdev, preboot_ver);
- if (rc)
- return rc;
- }
-
- break;
- default:
- dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw: fw descriptor
- * @fw_loader: managing structure for loading device's FW
- */
-static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
- const struct firmware *fw,
- struct fw_load_mgr *fw_loader)
-{
- struct lkd_fw_comms_desc *fw_desc;
- struct pci_mem_region *region;
- void __iomem *dest;
- u64 addr;
- int rc;
-
- fw_desc = &fw_loader->dynamic_loader.comm_desc;
- addr = le64_to_cpu(fw_desc->img_addr);
-
- /* find memory region to which to copy the image */
- region = fw_loader->dynamic_loader.image_region;
-
- dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
- (addr - region->region_base);
-
- rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
- fw_loader->boot_fit_img.src_off,
- fw_loader->boot_fit_img.copy_size);
-
- return rc;
-}
-
-/**
- * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
- *
- * @hdev: pointer to the habanalabs device structure
- * @msg: message
- * @fw_loader: managing structure for loading device's FW
- */
-static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
- struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
-{
- struct lkd_fw_comms_desc *fw_desc;
- struct pci_mem_region *region;
- void __iomem *dest;
- u64 addr;
- int rc;
-
- fw_desc = &fw_loader->dynamic_loader.comm_desc;
- addr = le64_to_cpu(fw_desc->img_addr);
-
- /* find memory region to which to copy the image */
- region = fw_loader->dynamic_loader.image_region;
-
- dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
- (addr - region->region_base);
-
- rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
-
- return rc;
-}
-
-/**
- * hl_fw_boot_fit_update_state - update internal data structures after boot-fit
- * is loaded
- *
- * @hdev: pointer to the habanalabs device structure
- * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
- * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
- u32 cpu_boot_dev_sts0_reg,
- u32 cpu_boot_dev_sts1_reg)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
-
- hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
-
- /* Read boot_cpu status bits */
- if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
- prop->fw_bootfit_cpu_boot_dev_sts0 =
- RREG32(cpu_boot_dev_sts0_reg);
-
- prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
-
- dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
- prop->fw_bootfit_cpu_boot_dev_sts0);
- }
-
- if (prop->fw_cpu_boot_dev_sts1_valid) {
- prop->fw_bootfit_cpu_boot_dev_sts1 =
- RREG32(cpu_boot_dev_sts1_reg);
-
- dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
- prop->fw_bootfit_cpu_boot_dev_sts1);
- }
-
- dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
- prop->hard_reset_done_by_fw ? "enabled" : "disabled");
-}
-
-static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
-{
- struct cpu_dyn_regs *dyn_regs =
- &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
-
- /* Check whether all 3 interrupt interfaces are set, if not use a
- * single interface
- */
- if (!hdev->asic_prop.gic_interrupts_enable &&
- !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
- dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
- dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
-
- dev_warn(hdev->dev,
- "Using a single interrupt interface towards cpucp");
- }
-}
-/**
- * hl_fw_dynamic_load_image - load FW image using dynamic protocol
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @load_fwc: the FW component to be loaded
- * @img_ld_timeout: image load timeout
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_load_image(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader,
- enum hl_fw_component load_fwc,
- u32 img_ld_timeout)
-{
- enum hl_fw_component cur_fwc;
- const struct firmware *fw;
- char *fw_name;
- int rc = 0;
-
- /*
- * when loading image we have one of 2 scenarios:
- * 1. current FW component is preboot and we want to load boot-fit
- * 2. current FW component is boot-fit and we want to load linux
- */
- if (load_fwc == FW_COMP_BOOT_FIT) {
- cur_fwc = FW_COMP_PREBOOT;
- fw_name = fw_loader->boot_fit_img.image_name;
- } else {
- cur_fwc = FW_COMP_BOOT_FIT;
- fw_name = fw_loader->linux_img.image_name;
- }
-
- /* request FW in order to communicate to FW the size to be allocated */
- rc = hl_request_fw(hdev, &fw, fw_name);
- if (rc)
- return rc;
-
- /* store the image size for future validation */
- fw_loader->dynamic_loader.fw_image_size = fw->size;
-
- rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
- if (rc)
- goto release_fw;
-
- /* read preboot version */
- rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
- fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
- if (rc)
- goto release_fw;
-
- /* update state according to boot stage */
- if (cur_fwc == FW_COMP_BOOT_FIT) {
- struct cpu_dyn_regs *dyn_regs;
-
- dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
- hl_fw_boot_fit_update_state(hdev,
- le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
- le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
- }
-
- /* copy boot fit to space allocated by FW */
- rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
- if (rc)
- goto release_fw;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
- 0, true,
- fw_loader->cpu_timeout);
- if (rc)
- goto release_fw;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
- 0, false,
- img_ld_timeout);
-
-release_fw:
- hl_release_firmware(fw);
- return rc;
-}
-
-static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- struct dynamic_fw_load_mgr *dyn_loader;
- u32 status;
- int rc;
-
- dyn_loader = &fw_loader->dynamic_loader;
-
- /*
- * Make sure CPU boot-loader is running
- * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
- * yet there is a debug scenario in which we loading uboot (without Linux)
- * which at later stage is relocated to DRAM. In this case we expect
- * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
- * poll flags
- */
- rc = hl_poll_timeout(
- hdev,
- le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
- status,
- (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
- (status == CPU_BOOT_STATUS_SRAM_AVAIL),
- hdev->fw_poll_interval_usec,
- dyn_loader->wait_for_bl_timeout);
- if (rc) {
- dev_err(hdev->dev, "failed to wait for boot\n");
- return rc;
- }
-
- dev_dbg(hdev->dev, "uboot status = %d\n", status);
- return 0;
-}
-
-static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- struct dynamic_fw_load_mgr *dyn_loader;
- u32 status;
- int rc;
-
- dyn_loader = &fw_loader->dynamic_loader;
-
- /* Make sure CPU linux is running */
-
- rc = hl_poll_timeout(
- hdev,
- le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
- status,
- (status == CPU_BOOT_STATUS_SRAM_AVAIL),
- hdev->fw_poll_interval_usec,
- fw_loader->cpu_timeout);
- if (rc) {
- dev_err(hdev->dev, "failed to wait for Linux\n");
- return rc;
- }
-
- dev_dbg(hdev->dev, "Boot status = %d\n", status);
- return 0;
-}
-
-/**
- * hl_fw_linux_update_state - update internal data structures after Linux
- * is loaded.
- * Note: Linux initialization is comprised mainly
- * of two stages - loading kernel (SRAM_AVAIL)
- * & loading ARMCP.
- * Therefore reading boot device status in any of
- * these stages might result in different values.
- *
- * @hdev: pointer to the habanalabs device structure
- * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
- * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static void hl_fw_linux_update_state(struct hl_device *hdev,
- u32 cpu_boot_dev_sts0_reg,
- u32 cpu_boot_dev_sts1_reg)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
-
- hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
-
- /* Read FW application security bits */
- if (prop->fw_cpu_boot_dev_sts0_valid) {
- prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
-
- prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
-
- if (prop->fw_app_cpu_boot_dev_sts0 &
- CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
- prop->gic_interrupts_enable = false;
-
- dev_dbg(hdev->dev,
- "Firmware application CPU status0 %#x\n",
- prop->fw_app_cpu_boot_dev_sts0);
-
- dev_dbg(hdev->dev, "GIC controller is %s\n",
- prop->gic_interrupts_enable ?
- "enabled" : "disabled");
- }
-
- if (prop->fw_cpu_boot_dev_sts1_valid) {
- prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
-
- dev_dbg(hdev->dev,
- "Firmware application CPU status1 %#x\n",
- prop->fw_app_cpu_boot_dev_sts1);
- }
-
- dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
- prop->hard_reset_done_by_fw ? "enabled" : "disabled");
-
- dev_info(hdev->dev, "Successfully loaded firmware to device\n");
-}
-
-/**
- * hl_fw_dynamic_send_msg - send a COMMS message with attached data
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- * @msg_type: message type
- * @data: data to be sent
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
-{
- struct lkd_msg_comms *msg;
- int rc;
-
- msg = kzalloc(sizeof(*msg), GFP_KERNEL);
- if (!msg)
- return -ENOMEM;
-
- /* create message to be sent */
- msg->header.type = msg_type;
- msg->header.size = cpu_to_le16(sizeof(struct comms_msg_header));
- msg->header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
-
- switch (msg_type) {
- case HL_COMMS_RESET_CAUSE_TYPE:
- msg->reset_cause = *(__u8 *) data;
- break;
-
- default:
- dev_err(hdev->dev,
- "Send COMMS message - invalid message type %u\n",
- msg_type);
- rc = -EINVAL;
- goto out;
- }
-
- rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
- sizeof(struct lkd_msg_comms));
- if (rc)
- goto out;
-
- /* copy message to space allocated by FW */
- rc = hl_fw_dynamic_copy_msg(hdev, msg, fw_loader);
- if (rc)
- goto out;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
- 0, true,
- fw_loader->cpu_timeout);
- if (rc)
- goto out;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
- 0, true,
- fw_loader->cpu_timeout);
-
-out:
- kfree(msg);
- return rc;
-}
-
-/**
- * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- *
- * @return 0 on success, otherwise non-zero error code
- *
- * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
- * the communication is done using registers:
- * - LKD command register
- * - FW status register
- * the protocol is race free. this goal is achieved by splitting the requests
- * and response to known synchronization points between the LKD and the FW.
- * each response to LKD request is known and bound to a predefined timeout.
- * in case of timeout expiration without the desired status from FW- the
- * protocol (and hence the boot) will fail.
- */
-static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- struct cpu_dyn_regs *dyn_regs;
- int rc, fw_error_rc;
-
- dev_info(hdev->dev,
- "Loading %sfirmware to device, may take some time...\n",
- hdev->asic_prop.fw_security_enabled ? "secured " : "");
-
- /* initialize FW descriptor as invalid */
- fw_loader->dynamic_loader.fw_desc_valid = false;
-
- /*
- * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
- * It will be updated from FW after hl_fw_dynamic_request_descriptor().
- */
- dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
-
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
- 0, true,
- fw_loader->cpu_timeout);
- if (rc)
- goto protocol_err;
-
- if (hdev->reset_info.curr_reset_cause) {
- rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
- HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
- if (rc)
- goto protocol_err;
-
- /* Clear current reset cause */
- hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
- }
-
- if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
- struct lkd_fw_binning_info *binning_info;
-
- rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
- if (rc)
- goto protocol_err;
-
- /* read preboot version */
- rc = hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
- fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
-
- if (rc)
- goto out;
-
- /* read binning info from preboot */
- if (hdev->support_preboot_binning) {
- binning_info = &fw_loader->dynamic_loader.comm_desc.binning_info;
- hdev->tpc_binning = le64_to_cpu(binning_info->tpc_mask_l);
- hdev->dram_binning = le32_to_cpu(binning_info->dram_mask);
- hdev->edma_binning = le32_to_cpu(binning_info->edma_mask);
- hdev->decoder_binning = le32_to_cpu(binning_info->dec_mask);
- hdev->rotator_binning = le32_to_cpu(binning_info->rot_mask);
-
- rc = hdev->asic_funcs->set_dram_properties(hdev);
- if (rc)
- goto out;
-
- dev_dbg(hdev->dev,
- "Read binning masks: tpc: 0x%llx, dram: 0x%llx, edma: 0x%x, dec: 0x%x, rot:0x%x\n",
- hdev->tpc_binning, hdev->dram_binning, hdev->edma_binning,
- hdev->decoder_binning, hdev->rotator_binning);
- }
-out:
- return rc;
- }
-
- /* load boot fit to FW */
- rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
- fw_loader->boot_fit_timeout);
- if (rc) {
- dev_err(hdev->dev, "failed to load boot fit\n");
- goto protocol_err;
- }
-
- /*
- * when testing FW load (without Linux) on PLDM we don't want to
- * wait until boot fit is active as it may take several hours.
- * instead, we load the bootfit and let it do all initialization in
- * the background.
- */
- if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
- return 0;
-
- rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
- if (rc)
- goto protocol_err;
-
- /* Enable DRAM scrambling before Linux boot and after successful
- * UBoot
- */
- hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
-
- if (!(hdev->fw_components & FW_TYPE_LINUX)) {
- dev_info(hdev->dev, "Skip loading Linux F/W\n");
- return 0;
- }
-
- if (fw_loader->skip_bmc) {
- rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
- COMMS_SKIP_BMC, 0,
- true,
- fw_loader->cpu_timeout);
- if (rc) {
- dev_err(hdev->dev, "failed to load boot fit\n");
- goto protocol_err;
- }
- }
-
- /* load Linux image to FW */
- rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
- fw_loader->cpu_timeout);
- if (rc) {
- dev_err(hdev->dev, "failed to load Linux\n");
- goto protocol_err;
- }
-
- rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
- if (rc)
- goto protocol_err;
-
- hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
- le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
-
- hl_fw_dynamic_update_linux_interrupt_if(hdev);
-
-protocol_err:
- if (fw_loader->dynamic_loader.fw_desc_valid) {
- fw_error_rc = fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
- le32_to_cpu(dyn_regs->cpu_boot_err1),
- le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
- le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
-
- if (fw_error_rc)
- return fw_error_rc;
- }
-
- return rc;
-}
-
-/**
- * hl_fw_static_init_cpu - initialize the device CPU using static protocol
- *
- * @hdev: pointer to the habanalabs device structure
- * @fw_loader: managing structure for loading device's FW
- *
- * @return 0 on success, otherwise non-zero error code
- */
-static int hl_fw_static_init_cpu(struct hl_device *hdev,
- struct fw_load_mgr *fw_loader)
-{
- u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
- u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
- struct static_fw_load_mgr *static_loader;
- u32 cpu_boot_status_reg;
- int rc;
-
- if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
- return 0;
-
- /* init common loader parameters */
- cpu_timeout = fw_loader->cpu_timeout;
-
- /* init static loader parameters */
- static_loader = &fw_loader->static_loader;
- cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
- msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
- cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
- cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
- cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
-
- dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
- cpu_timeout / USEC_PER_SEC);
-
- /* Wait for boot FIT request */
- rc = hl_poll_timeout(
- hdev,
- cpu_boot_status_reg,
- status,
- status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
- hdev->fw_poll_interval_usec,
- fw_loader->boot_fit_timeout);
-
- if (rc) {
- dev_dbg(hdev->dev,
- "No boot fit request received, resuming boot\n");
- } else {
- rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
- if (rc)
- goto out;
-
- /* Clear device CPU message status */
- WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
-
- /* Signal device CPU that boot loader is ready */
- WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
-
- /* Poll for CPU device ack */
- rc = hl_poll_timeout(
- hdev,
- cpu_msg_status_reg,
- status,
- status == CPU_MSG_OK,
- hdev->fw_poll_interval_usec,
- fw_loader->boot_fit_timeout);
-
- if (rc) {
- dev_err(hdev->dev,
- "Timeout waiting for boot fit load ack\n");
- goto out;
- }
-
- /* Clear message */
- WREG32(msg_to_cpu_reg, KMD_MSG_NA);
- }
-
- /*
- * Make sure CPU boot-loader is running
- * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
- * yet there is a debug scenario in which we loading uboot (without Linux)
- * which at later stage is relocated to DRAM. In this case we expect
- * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
- * poll flags
- */
- rc = hl_poll_timeout(
- hdev,
- cpu_boot_status_reg,
- status,
- (status == CPU_BOOT_STATUS_DRAM_RDY) ||
- (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
- (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
- (status == CPU_BOOT_STATUS_SRAM_AVAIL),
- hdev->fw_poll_interval_usec,
- cpu_timeout);
-
- dev_dbg(hdev->dev, "uboot status = %d\n", status);
-
- /* Read U-Boot version now in case we will later fail */
- hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
-
- /* update state according to boot stage */
- hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
- cpu_boot_dev_status1_reg);
-
- if (rc) {
- detect_cpu_boot_status(hdev, status);
- rc = -EIO;
- goto out;
- }
-
- /* Enable DRAM scrambling before Linux boot and after successful
- * UBoot
- */
- hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
-
- if (!(hdev->fw_components & FW_TYPE_LINUX)) {
- dev_info(hdev->dev, "Skip loading Linux F/W\n");
- rc = 0;
- goto out;
- }
-
- if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
- rc = 0;
- goto out;
- }
-
- dev_info(hdev->dev,
- "Loading firmware to device, may take some time...\n");
-
- rc = hdev->asic_funcs->load_firmware_to_device(hdev);
- if (rc)
- goto out;
-
- if (fw_loader->skip_bmc) {
- WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
-
- rc = hl_poll_timeout(
- hdev,
- cpu_boot_status_reg,
- status,
- (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
- hdev->fw_poll_interval_usec,
- cpu_timeout);
-
- if (rc) {
- dev_err(hdev->dev,
- "Failed to get ACK on skipping BMC, %d\n",
- status);
- WREG32(msg_to_cpu_reg, KMD_MSG_NA);
- rc = -EIO;
- goto out;
- }
- }
-
- WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
-
- rc = hl_poll_timeout(
- hdev,
- cpu_boot_status_reg,
- status,
- (status == CPU_BOOT_STATUS_SRAM_AVAIL),
- hdev->fw_poll_interval_usec,
- cpu_timeout);
-
- /* Clear message */
- WREG32(msg_to_cpu_reg, KMD_MSG_NA);
-
- if (rc) {
- if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
- dev_err(hdev->dev,
- "Device reports FIT image is corrupted\n");
- else
- dev_err(hdev->dev,
- "Failed to load firmware to device, %d\n",
- status);
-
- rc = -EIO;
- goto out;
- }
-
- rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
- fw_loader->static_loader.boot_err1_reg,
- cpu_boot_dev_status0_reg,
- cpu_boot_dev_status1_reg);
- if (rc)
- return rc;
-
- hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
- cpu_boot_dev_status1_reg);
-
- return 0;
-
-out:
- fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
- fw_loader->static_loader.boot_err1_reg,
- cpu_boot_dev_status0_reg,
- cpu_boot_dev_status1_reg);
-
- return rc;
-}
-
-/**
- * hl_fw_init_cpu - initialize the device CPU
- *
- * @hdev: pointer to the habanalabs device structure
- *
- * @return 0 on success, otherwise non-zero error code
- *
- * perform necessary initializations for device's CPU. takes into account if
- * init protocol is static or dynamic.
- */
-int hl_fw_init_cpu(struct hl_device *hdev)
-{
- struct asic_fixed_properties *prop = &hdev->asic_prop;
- struct fw_load_mgr *fw_loader = &hdev->fw_loader;
-
- return prop->dynamic_fw_load ?
- hl_fw_dynamic_init_cpu(hdev, fw_loader) :
- hl_fw_static_init_cpu(hdev, fw_loader);
-}
-
-void hl_fw_set_pll_profile(struct hl_device *hdev)
-{
- hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
- hdev->asic_prop.max_freq_value);
-}
-
-int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
-{
- long value;
-
- if (!hl_device_operational(hdev, NULL))
- return -ENODEV;
-
- if (!hdev->pdev) {
- *cur_clk = 0;
- *max_clk = 0;
- return 0;
- }
-
- value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
-
- if (value < 0) {
- dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
- return value;
- }
-
- *max_clk = (value / 1000 / 1000);
-
- value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
-
- if (value < 0) {
- dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
- return value;
- }
-
- *cur_clk = (value / 1000 / 1000);
-
- return 0;
-}
-
-long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
-{
- struct cpucp_packet pkt;
- u32 used_pll_idx;
- u64 result;
- int rc;
-
- rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
- if (rc)
- return rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- if (curr)
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
- CPUCP_PKT_CTL_OPCODE_SHIFT);
- else
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
-
- if (rc) {
- dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
- used_pll_idx, rc);
- return rc;
- }
-
- return (long) result;
-}
-
-void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
-{
- struct cpucp_packet pkt;
- u32 used_pll_idx;
- int rc;
-
- rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
- if (rc)
- return;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
- pkt.value = cpu_to_le64(freq);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
-
- if (rc)
- dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
- used_pll_idx, rc);
-}
-
-long hl_fw_get_max_power(struct hl_device *hdev)
-{
- struct cpucp_packet pkt;
- u64 result;
- int rc;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
-
- if (rc) {
- dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
- return rc;
- }
-
- return result;
-}
-
-void hl_fw_set_max_power(struct hl_device *hdev)
-{
- struct cpucp_packet pkt;
- int rc;
-
- /* TODO: remove this after simulator supports this packet */
- if (!hdev->pdev)
- return;
-
- memset(&pkt, 0, sizeof(pkt));
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.value = cpu_to_le64(hdev->max_power);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
-
- if (rc)
- dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
-}
-
-static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
- u32 nonce, u32 timeout)
-{
- struct cpucp_packet pkt = {};
- dma_addr_t req_dma_addr;
- void *req_cpu_addr;
- int rc;
-
- req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
- if (!req_cpu_addr) {
- dev_err(hdev->dev,
- "Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
- return -ENOMEM;
- }
-
- memset(data, 0, size);
-
- pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(req_dma_addr);
- pkt.data_max_size = cpu_to_le32(size);
- pkt.nonce = cpu_to_le32(nonce);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
- timeout, NULL);
- if (rc) {
- dev_err(hdev->dev,
- "Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
- goto out;
- }
-
- memcpy(data, req_cpu_addr, size);
-
-out:
- hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
-
- return rc;
-}
-
-int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
- u32 nonce)
-{
- return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
- sizeof(struct cpucp_sec_attest_info), nonce,
- HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
-}
-
-int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
- dma_addr_t buff, u32 *size)
-{
- struct cpucp_packet pkt = {0};
- u64 result;
- int rc = 0;
-
- pkt.ctl = cpu_to_le32(CPUCP_PACKET_GENERIC_PASSTHROUGH << CPUCP_PKT_CTL_OPCODE_SHIFT);
- pkt.addr = cpu_to_le64(buff);
- pkt.data_max_size = cpu_to_le32(*size);
- pkt.pkt_subidx = cpu_to_le32(sub_opcode);
-
- rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)&pkt, sizeof(pkt),
- HL_CPUCP_INFO_TIMEOUT_USEC, &result);
- if (rc)
- dev_err(hdev->dev, "failed to send CPUCP data of generic fw pkt\n");
- else
- dev_dbg(hdev->dev, "generic pkt was successful, result: 0x%llx\n", result);
-
- *size = (u32)result;
-
- return rc;
-}