summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/vf610_nfc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/vf610_nfc.c')
-rw-r--r--drivers/mtd/nand/raw/vf610_nfc.c768
1 files changed, 768 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
new file mode 100644
index 0000000000..619d0403e9
--- /dev/null
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -0,0 +1,768 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Ported to U-Boot by Stefan Agner
+ * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
+ * Jason ported to M54418TWR and MVFA5.
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ * Bill Pringlemeir <bpringlemeir@nbsps.com>
+ * Shaohui Xie <b21989@freescale.com>
+ * Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#include <nand.h>
+#include <errno.h>
+#include <asm/io.h>
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1 0x3F00
+#define NFC_FLASH_CMD2 0x3F04
+#define NFC_COL_ADDR 0x3F08
+#define NFC_ROW_ADDR 0x3F0c
+#define NFC_ROW_ADDR_INC 0x3F14
+#define NFC_FLASH_STATUS1 0x3F18
+#define NFC_FLASH_STATUS2 0x3F1c
+#define NFC_CACHE_SWAP 0x3F28
+#define NFC_SECTOR_SIZE 0x3F2c
+#define NFC_FLASH_CONFIG 0x3F30
+#define NFC_IRQ_STATUS 0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n) ((n) * 0x1000)
+
+#define PAGE_2K 0x0800
+#define OOB_64 0x0040
+#define OOB_MAX 0x0100
+
+/*
+ * NFC_CMD2[CODE] values. See section:
+ * - 31.4.7 Flash Command Code Description, Vybrid manual
+ * - 23.8.6 Flash Command Sequencer, MPC5125 manual
+ *
+ * Briefly these are bitmasks of controller cycles.
+ */
+#define READ_PAGE_CMD_CODE 0x7EE0
+#define READ_ONFI_PARAM_CMD_CODE 0x4860
+#define PROGRAM_PAGE_CMD_CODE 0x7FC0
+#define ERASE_CMD_CODE 0x4EC0
+#define READ_ID_CMD_CODE 0x4804
+#define RESET_CMD_CODE 0x4040
+#define STATUS_READ_CMD_CODE 0x4068
+
+/* NFC ECC mode define */
+#define ECC_BYPASS 0
+#define ECC_45_BYTE 6
+#define ECC_60_BYTE 7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK 0xFF000000
+#define CMD_BYTE2_SHIFT 24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK 0xFF000000
+#define CMD_BYTE1_SHIFT 24
+#define CMD_CODE_MASK 0x00FFFF00
+#define CMD_CODE_SHIFT 8
+#define BUFNO_MASK 0x00000006
+#define BUFNO_SHIFT 1
+#define START_BIT (1<<0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK 0x0000FFFF
+#define COL_ADDR_SHIFT 0
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK 0x00FFFFFF
+#define ROW_ADDR_SHIFT 0
+#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
+#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT 24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK 0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
+#define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
+#define CONFIG_DMA_REQ_BIT (1<<20)
+#define CONFIG_ECC_MODE_MASK 0x000E0000
+#define CONFIG_ECC_MODE_SHIFT 17
+#define CONFIG_FAST_FLASH_BIT (1<<16)
+#define CONFIG_16BIT (1<<7)
+#define CONFIG_BOOT_MODE_BIT (1<<6)
+#define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
+#define CONFIG_PAGE_CNT_MASK 0xF
+#define CONFIG_PAGE_CNT_SHIFT 0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT (1<<29)
+#define IDLE_EN_BIT (1<<20)
+#define CMD_DONE_CLEAR_BIT (1<<18)
+#define IDLE_CLEAR_BIT (1<<17)
+
+#define NFC_TIMEOUT (1000)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS 0x4
+#define ECC_STATUS_MASK 0x80
+#define ECC_STATUS_ERR_COUNT 0x3F
+
+enum vf610_nfc_alt_buf {
+ ALT_BUF_DATA = 0,
+ ALT_BUF_ID = 1,
+ ALT_BUF_STAT = 2,
+ ALT_BUF_ONFI = 3,
+};
+
+struct vf610_nfc {
+ struct nand_chip chip;
+ void __iomem *regs;
+ uint buf_offset;
+ int write_sz;
+ /* Status and ID are in alternate locations. */
+ enum vf610_nfc_alt_buf alt_buf;
+};
+
+#define mtd_to_nfc(_mtd) nand_get_controller_data(mtd_to_nand(_mtd))
+
+#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
+#define ECC_HW_MODE ECC_45_BYTE
+
+static struct nand_ecclayout vf610_nfc_ecc = {
+ .eccbytes = 45,
+ .eccpos = {19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 2,
+ .length = 17} }
+};
+#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
+#define ECC_HW_MODE ECC_60_BYTE
+
+static struct nand_ecclayout vf610_nfc_ecc = {
+ .eccbytes = 60,
+ .eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27,
+ 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43,
+ 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63 },
+ .oobfree = {
+ {.offset = 2,
+ .length = 2} }
+};
+#endif
+
+static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
+{
+ vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
+{
+ vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
+ u32 mask, u32 shift, u32 val)
+{
+ vf610_nfc_write(mtd, reg,
+ (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
+}
+
+static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
+{
+ /*
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * For the time being, use memcpy
+ */
+ memcpy(dst, src, n);
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(void __iomem *regbase)
+{
+ void __iomem *reg = regbase + NFC_IRQ_STATUS;
+ u32 tmp = __raw_readl(reg);
+ tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+ __raw_writel(tmp, reg);
+}
+
+/* Wait for complete operation */
+static void vf610_nfc_done(struct mtd_info *mtd)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ uint start;
+
+ /*
+ * Barrier is needed after this write. This write need
+ * to be done before reading the next register the first
+ * time.
+ * vf610_nfc_set implicates such a barrier by using writel
+ * to write to the register.
+ */
+ vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
+
+ start = get_timer(0);
+
+ while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
+ if (get_timer(start) > NFC_TIMEOUT) {
+ printf("Timeout while waiting for IDLE.\n");
+ return;
+ }
+ }
+ vf610_nfc_clear_status(nfc->regs);
+}
+
+static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
+{
+ u32 flash_id;
+
+ if (col < 4) {
+ flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
+ flash_id >>= (3 - col) * 8;
+ } else {
+ flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
+ flash_id >>= 24;
+ }
+
+ return flash_id & 0xff;
+}
+
+static u8 vf610_nfc_get_status(struct mtd_info *mtd)
+{
+ return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
+}
+
+/* Single command */
+static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
+ u32 cmd_code)
+{
+ void __iomem *reg = regbase + NFC_FLASH_CMD2;
+ u32 tmp;
+ vf610_nfc_clear_status(regbase);
+
+ tmp = __raw_readl(reg);
+ tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
+ tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
+ tmp |= cmd_code << CMD_CODE_SHIFT;
+ __raw_writel(tmp, reg);
+}
+
+/* Two commands */
+static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
+ u32 cmd_byte2, u32 cmd_code)
+{
+ void __iomem *reg = regbase + NFC_FLASH_CMD1;
+ u32 tmp;
+ vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
+
+ tmp = __raw_readl(reg);
+ tmp &= ~CMD_BYTE2_MASK;
+ tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
+ __raw_writel(tmp, reg);
+}
+
+static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
+{
+ if (column != -1) {
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ if (nfc->chip.options & NAND_BUSWIDTH_16)
+ column = column / 2;
+ vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
+ COL_ADDR_SHIFT, column);
+ }
+ if (page != -1)
+ vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, page);
+}
+
+static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
+{
+ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
+{
+ __raw_writel(size, regbase + NFC_SECTOR_SIZE);
+}
+
+/* Send command to NAND chip */
+static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
+ int column, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
+
+ nfc->buf_offset = max(column, 0);
+ nfc->alt_buf = ALT_BUF_DATA;
+
+ switch (command) {
+ case NAND_CMD_SEQIN:
+ /* Use valid column/page from preread... */
+ vf610_nfc_addr_cycle(mtd, column, page);
+ nfc->buf_offset = 0;
+
+ /*
+ * SEQIN => data => PAGEPROG sequence is done by the controller
+ * hence we do not need to issue the command here...
+ */
+ return;
+ case NAND_CMD_PAGEPROG:
+ trfr_sz += nfc->write_sz;
+ vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
+ vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+ vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
+ command, PROGRAM_PAGE_CMD_CODE);
+ break;
+
+ case NAND_CMD_RESET:
+ vf610_nfc_transfer_size(nfc->regs, 0);
+ vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
+ break;
+
+ case NAND_CMD_READOOB:
+ trfr_sz += mtd->oobsize;
+ column = mtd->writesize;
+ vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+ vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
+ NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+ vf610_nfc_addr_cycle(mtd, column, page);
+ vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
+ break;
+
+ case NAND_CMD_READ0:
+ trfr_sz += mtd->writesize + mtd->oobsize;
+ vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+ vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
+ vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
+ NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+ vf610_nfc_addr_cycle(mtd, column, page);
+ break;
+
+ case NAND_CMD_PARAM:
+ nfc->alt_buf = ALT_BUF_ONFI;
+ trfr_sz = 3 * sizeof(struct nand_onfi_params);
+ vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+ vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
+ READ_ONFI_PARAM_CMD_CODE);
+ vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, column);
+ vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
+ break;
+
+ case NAND_CMD_ERASE1:
+ vf610_nfc_transfer_size(nfc->regs, 0);
+ vf610_nfc_send_commands(nfc->regs, command,
+ NAND_CMD_ERASE2, ERASE_CMD_CODE);
+ vf610_nfc_addr_cycle(mtd, column, page);
+ break;
+
+ case NAND_CMD_READID:
+ nfc->alt_buf = ALT_BUF_ID;
+ nfc->buf_offset = 0;
+ vf610_nfc_transfer_size(nfc->regs, 0);
+ vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
+ vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, column);
+ break;
+
+ case NAND_CMD_STATUS:
+ nfc->alt_buf = ALT_BUF_STAT;
+ vf610_nfc_transfer_size(nfc->regs, 0);
+ vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
+ break;
+ default:
+ return;
+ }
+
+ vf610_nfc_done(mtd);
+
+ nfc->write_sz = 0;
+}
+
+/* Read data from NFC buffers */
+static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ uint c = nfc->buf_offset;
+
+ /* Alternate buffers are only supported through read_byte */
+ if (nfc->alt_buf)
+ return;
+
+ vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
+
+ nfc->buf_offset += len;
+}
+
+/* Write data to NFC buffers */
+static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ uint c = nfc->buf_offset;
+ uint l;
+
+ l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
+ vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
+
+ nfc->write_sz += l;
+ nfc->buf_offset += l;
+}
+
+/* Read byte from NFC buffers */
+static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ u8 tmp;
+ uint c = nfc->buf_offset;
+
+ switch (nfc->alt_buf) {
+ case ALT_BUF_ID:
+ tmp = vf610_nfc_get_id(mtd, c);
+ break;
+ case ALT_BUF_STAT:
+ tmp = vf610_nfc_get_status(mtd);
+ break;
+#ifdef __LITTLE_ENDIAN
+ case ALT_BUF_ONFI:
+ /* Reverse byte since the controller uses big endianness */
+ c = nfc->buf_offset ^ 0x3;
+ /* fall-through */
+#endif
+ default:
+ tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
+ break;
+ }
+ nfc->buf_offset++;
+ return tmp;
+}
+
+/* Read word from NFC buffers */
+static u16 vf610_nfc_read_word(struct mtd_info *mtd)
+{
+ u16 tmp;
+
+ vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+ return tmp;
+}
+
+/* If not provided, upper layers apply a fixed delay. */
+static int vf610_nfc_dev_ready(struct mtd_info *mtd)
+{
+ /* NFC handles R/B internally; always ready. */
+ return 1;
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+#ifdef CONFIG_VF610
+ u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
+ tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+
+ if (chip >= 0) {
+ tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+ tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
+ }
+
+ vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
+#endif
+}
+
+/* Count the number of 0's in buff upto max_bits */
+static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+ uint32_t *buff32 = (uint32_t *)buff;
+ int k, written_bits = 0;
+
+ for (k = 0; k < (size / 4); k++) {
+ written_bits += hweight32(~buff32[k]);
+ if (written_bits > max_bits)
+ break;
+ }
+
+ return written_bits;
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+ uint8_t *oob, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+ u8 ecc_status;
+ u8 ecc_count;
+ int flips;
+ int flips_threshold = nfc->chip.ecc.strength / 2;
+
+ ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
+ ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+ if (!(ecc_status & ECC_STATUS_MASK))
+ return ecc_count;
+
+ /* Read OOB without ECC unit enabled */
+ vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
+ vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
+
+ /*
+ * On an erased page, bit count (including OOB) should be zero or
+ * at least less then half of the ECC strength.
+ */
+ flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
+ flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
+
+ if (unlikely(flips > flips_threshold))
+ return -EINVAL;
+
+ /* Erased page. */
+ memset(dat, 0xff, nfc->chip.ecc.size);
+ memset(oob, 0xff, mtd->oobsize);
+ return flips;
+}
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int eccsize = chip->ecc.size;
+ int stat;
+
+ vf610_nfc_read_buf(mtd, buf, eccsize);
+ if (oob_required)
+ vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ return 0;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ return stat;
+ }
+}
+
+/*
+ * ECC will be calculated automatically
+ */
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ vf610_nfc_write_buf(mtd, buf, mtd->writesize);
+ if (oob_required)
+ vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ /* Always write whole page including OOB due to HW ECC */
+ nfc->write_sz = mtd->writesize + mtd->oobsize;
+
+ return 0;
+}
+
+struct vf610_nfc_config {
+ int hardware_ecc;
+ int width;
+ int flash_bbt;
+};
+
+static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
+{
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ struct vf610_nfc *nfc;
+ int err = 0;
+ struct vf610_nfc_config cfg = {
+ .hardware_ecc = 1,
+#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
+ .width = 16,
+#else
+ .width = 8,
+#endif
+ .flash_bbt = 1,
+ };
+
+ nfc = malloc(sizeof(*nfc));
+ if (!nfc) {
+ printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
+ return -ENOMEM;
+ }
+
+ chip = &nfc->chip;
+ nfc->regs = addr;
+
+ mtd = nand_to_mtd(chip);
+ nand_set_controller_data(chip, nfc);
+
+ if (cfg.width == 16)
+ chip->options |= NAND_BUSWIDTH_16;
+
+ chip->dev_ready = vf610_nfc_dev_ready;
+ chip->cmdfunc = vf610_nfc_command;
+ chip->read_byte = vf610_nfc_read_byte;
+ chip->read_word = vf610_nfc_read_word;
+ chip->read_buf = vf610_nfc_read_buf;
+ chip->write_buf = vf610_nfc_write_buf;
+ chip->select_chip = vf610_nfc_select_chip;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ chip->ecc.size = PAGE_2K;
+
+ /* Set configuration register. */
+ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+ vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+
+ /* Disable virtual pages, only one elementary transfer unit */
+ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+ CONFIG_PAGE_CNT_SHIFT, 1);
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
+ err = -ENXIO;
+ goto error;
+ }
+
+ if (cfg.width == 16)
+ vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ /* Bad block options. */
+ if (cfg.flash_bbt)
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
+ NAND_BBT_CREATE;
+
+ /* Single buffer only, max 256 OOB minus ECC status */
+ if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+ dev_err(nfc->dev, "Unsupported flash page size\n");
+ err = -ENXIO;
+ goto error;
+ }
+
+ if (cfg.hardware_ecc) {
+ if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+ dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+ err = -ENXIO;
+ goto error;
+ }
+
+ if (chip->ecc.size != mtd->writesize) {
+ dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
+ dev_err(nfc->dev, "Step size needs to be page size\n");
+ err = -ENXIO;
+ goto error;
+ }
+
+ /* Current HW ECC layouts only use 64 bytes of OOB */
+ if (mtd->oobsize > 64)
+ mtd->oobsize = 64;
+
+ /* propagate ecc.layout to mtd_info */
+ mtd->ecclayout = chip->ecc.layout;
+ chip->ecc.read_page = vf610_nfc_read_page;
+ chip->ecc.write_page = vf610_nfc_write_page;
+ chip->ecc.mode = NAND_ECC_HW;
+
+ chip->ecc.size = PAGE_2K;
+ chip->ecc.layout = &vf610_nfc_ecc;
+#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
+ chip->ecc.strength = 24;
+ chip->ecc.bytes = 45;
+#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
+ chip->ecc.strength = 32;
+ chip->ecc.bytes = 60;
+#endif
+
+ /* Set ECC_STATUS offset */
+ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_SRAM_ADDR_MASK,
+ CONFIG_ECC_SRAM_ADDR_SHIFT,
+ ECC_SRAM_ADDR >> 3);
+
+ /* Enable ECC status in SRAM */
+ vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+ }
+
+ /* second phase scan */
+ err = nand_scan_tail(mtd);
+ if (err)
+ return err;
+
+ err = nand_register(devnum, mtd);
+ if (err)
+ return err;
+
+ return 0;
+
+error:
+ return err;
+}
+
+void board_nand_init(void)
+{
+ int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
+ if (err)
+ printf("VF610 NAND init failed (err %d)\n", err);
+}