summaryrefslogtreecommitdiff
path: root/fs/btrfs/volumes.c
blob: c671b534266fa19487142fb2b71a38c7bbf01c6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
// SPDX-License-Identifier: GPL-2.0+
#include <stdlib.h>
#include <common.h>
#include <fs_internal.h>
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"

const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
		.tolerated_failures = 1,
		.devs_increment	= 2,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "raid10",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
		.tolerated_failures = 1,
		.devs_increment	= 2,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "raid1",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
	},
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 3,
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
	},
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 4,
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
	},
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "dup",
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 0,
		.raid_name	= "raid0",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 0,
		.raid_name	= "single",
		.bg_flag	= 0,
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
		.tolerated_failures = 1,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 1,
		.raid_name	= "raid5",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 2,
		.raid_name	= "raid6",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
	},
};

struct stripe {
	struct btrfs_device *dev;
	u64 physical;
};

static inline int nr_parity_stripes(struct map_lookup *map)
{
	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		return 1;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
		return 2;
	else
		return 0;
}

static inline int nr_data_stripes(struct map_lookup *map)
{
	return map->num_stripes - nr_parity_stripes(map);
}

#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )

static LIST_HEAD(fs_uuids);

/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 */
static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
		u64 devid, u8 *uuid)
{
	struct list_head *head = &fs_devices->devices;
	struct btrfs_device *dev;

	list_for_each_entry(dev, head, dev_list) {
		if (dev->devid == devid &&
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
			return dev;
		}
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, list) {
		if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
					     BTRFS_FSID_SIZE) == 0) &&
		    (memcmp(metadata_uuid, fs_devices->metadata_uuid,
			    BTRFS_FSID_SIZE) == 0)) {
			return fs_devices;
		} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
			return fs_devices;
		}
	}
	return NULL;
}

static int device_list_add(struct btrfs_super_block *disk_super,
			   u64 devid, struct blk_desc *desc,
			   struct disk_partition *part,
			   struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);
	bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);

	if (metadata_uuid)
		fs_devices = find_fsid(disk_super->fsid,
				       disk_super->metadata_uuid);
	else
		fs_devices = find_fsid(disk_super->fsid, NULL);

	if (!fs_devices) {
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		if (metadata_uuid)
			memcpy(fs_devices->metadata_uuid,
			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
		else
			memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
			       BTRFS_FSID_SIZE);

		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->lowest_devid = (u64)-1;
		device = NULL;
	} else {
		device = find_device(fs_devices, devid,
				    disk_super->dev_item.uuid);
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
		device->desc = desc;
		device->part = part;
		device->generation = found_transid;
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
		device->total_devs = btrfs_super_num_devices(disk_super);
		device->super_bytes_used = btrfs_super_bytes_used(disk_super);
		device->total_bytes =
			btrfs_stack_device_total_bytes(&disk_super->dev_item);
		device->bytes_used =
			btrfs_stack_device_bytes_used(&disk_super->dev_item);
		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
	} else if (!device->desc || !device->part) {
		/*
		 * The existing device has newer generation, so this one could
		 * be a stale one, don't add it.
		 */
		if (found_transid < device->generation) {
			error(
	"adding devid %llu gen %llu but found an existing device gen %llu",
				device->devid, found_transid,
				device->generation);
			return -EEXIST;
		} else {
			device->desc = desc;
			device->part = part;
		}
	}


	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	if (fs_devices->lowest_devid > devid) {
		fs_devices->lowest_devid = devid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_fs_devices *seed_devices;
	struct btrfs_device *device;
	int ret = 0;

again:
	if (!fs_devices)
		return 0;
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
		/* free the memory */
		free(device);
	}

	seed_devices = fs_devices->seed;
	fs_devices->seed = NULL;
	if (seed_devices) {
		struct btrfs_fs_devices *orig;

		orig = fs_devices;
		fs_devices = seed_devices;
		list_del(&orig->list);
		free(orig);
		goto again;
	} else {
		list_del(&fs_devices->list);
		free(fs_devices);
	}

	return ret;
}

void btrfs_close_all_devices(void)
{
	struct btrfs_fs_devices *fs_devices;

	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
					list);
		btrfs_close_devices(fs_devices);
	}
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;

	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (!device->desc || !device->part) {
			printf("no device found for devid %llu, skip it \n",
				device->devid);
			continue;
		}
	}
	return 0;
}

int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
			  struct btrfs_fs_devices **fs_devices_ret,
			  u64 *total_devs)
{
	struct btrfs_super_block *disk_super;
	char buf[BTRFS_SUPER_INFO_SIZE];
	int ret;
	u64 devid;

	disk_super = (struct btrfs_super_block *)buf;
	ret = btrfs_read_dev_super(desc, part, disk_super);
	if (ret < 0)
		return -EIO;
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
		*total_devs = 1;
	else
		*total_devs = btrfs_super_num_devices(disk_super);

	ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);

	return ret;
}

struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
				       u8 *uuid, u8 *fsid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *cur_devices;

	cur_devices = fs_info->fs_devices;
	while (cur_devices) {
		if (!fsid ||
		   !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			device = find_device(cur_devices, devid, uuid);
			if (device)
				return device;
		}
		cur_devices = cur_devices->seed;
	}
	return NULL;
}

/*
 * slot == -1: SYSTEM chunk
 * return -EIO on error, otherwise return 0
 */
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
			    struct extent_buffer *leaf,
			    struct btrfs_chunk *chunk,
			    int slot, u64 logical)
{
	u64 length;
	u64 stripe_len;
	u16 num_stripes;
	u16 sub_stripes;
	u64 type;
	u32 chunk_ondisk_size;
	u32 sectorsize = fs_info->sectorsize;

	/*
	 * Basic chunk item size check.  Note that btrfs_chunk already contains
	 * one stripe, so no "==" check.
	 */
	if (slot >= 0 &&
	    btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
		error("invalid chunk item size, have %u expect [%zu, %zu)",
			btrfs_item_size_nr(leaf, slot),
			sizeof(struct btrfs_chunk),
			BTRFS_LEAF_DATA_SIZE(fs_info));
		return -EUCLEAN;
	}
	length = btrfs_chunk_length(leaf, chunk);
	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
	type = btrfs_chunk_type(leaf, chunk);

	if (num_stripes == 0) {
		error("invalid num_stripes, have %u expect non-zero",
			num_stripes);
		return -EUCLEAN;
	}
	if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
	    btrfs_item_size_nr(leaf, slot)) {
		error("invalid chunk item size, have %u expect %lu",
			btrfs_item_size_nr(leaf, slot),
			btrfs_chunk_item_size(num_stripes));
		return -EUCLEAN;
	}

	/*
	 * These valid checks may be insufficient to cover every corner cases.
	 */
	if (!IS_ALIGNED(logical, sectorsize)) {
		error("invalid chunk logical %llu",  logical);
		return -EIO;
	}
	if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
		error("invalid chunk sectorsize %llu",
		      (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
		return -EIO;
	}
	if (!length || !IS_ALIGNED(length, sectorsize)) {
		error("invalid chunk length %llu",  length);
		return -EIO;
	}
	if (stripe_len != BTRFS_STRIPE_LEN) {
		error("invalid chunk stripe length: %llu", stripe_len);
		return -EIO;
	}
	/* Check on chunk item type */
	if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
		error("invalid chunk type %llu", type);
		return -EIO;
	}
	if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
		     BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
		error("unrecognized chunk type: %llu",
		      ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
			BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
		return -EIO;
	}
	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		error("missing chunk type flag: %llu", type);
		return -EIO;
	}
	if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
	      (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
		error("conflicting chunk type detected: %llu", type);
		return -EIO;
	}
	if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
	    !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
		error("conflicting chunk profile detected: %llu", type);
		return -EIO;
	}

	chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
	/*
	 * Btrfs_chunk contains at least one stripe, and for sys_chunk
	 * it can't exceed the system chunk array size
	 * For normal chunk, it should match its chunk item size.
	 */
	if (num_stripes < 1 ||
	    (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
	    (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
		error("invalid num_stripes: %u", num_stripes);
		return -EIO;
	}
	/*
	 * Device number check against profile
	 */
	if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
		  !IS_ALIGNED(num_stripes, sub_stripes))) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
	     num_stripes != 1)) {
		error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
		      num_stripes, sub_stripes,
		      type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
		return -EIO;
	}

	return 0;
}

/*
 * Get stripe length from chunk item and its stripe items
 *
 * Caller should only call this function after validating the chunk item
 * by using btrfs_check_chunk_valid().
 */
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
			struct extent_buffer *leaf,
			struct btrfs_chunk *chunk)
{
	u64 stripe_len;
	u64 chunk_len;
	u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 profile = btrfs_chunk_type(leaf, chunk) &
		      BTRFS_BLOCK_GROUP_PROFILE_MASK;

	chunk_len = btrfs_chunk_length(leaf, chunk);

	switch (profile) {
	case 0: /* Single profile */
	case BTRFS_BLOCK_GROUP_RAID1:
	case BTRFS_BLOCK_GROUP_RAID1C3:
	case BTRFS_BLOCK_GROUP_RAID1C4:
	case BTRFS_BLOCK_GROUP_DUP:
		stripe_len = chunk_len;
		break;
	case BTRFS_BLOCK_GROUP_RAID0:
		stripe_len = chunk_len / num_stripes;
		break;
	case BTRFS_BLOCK_GROUP_RAID5:
		stripe_len = chunk_len / (num_stripes - 1);
		break;
	case BTRFS_BLOCK_GROUP_RAID6:
		stripe_len = chunk_len / (num_stripes - 2);
		break;
	case BTRFS_BLOCK_GROUP_RAID10:
		stripe_len = chunk_len / (num_stripes /
				btrfs_chunk_sub_stripes(leaf, chunk));
		break;
	default:
		/* Invalid chunk profile found */
		BUG_ON(1);
	}
	return stripe_len;
}

int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	int ret;

	ce = search_cache_extent(&map_tree->cache_tree, logical);
	if (!ce) {
		fprintf(stderr, "No mapping for %llu-%llu\n",
			(unsigned long long)logical,
			(unsigned long long)logical+len);
		return 1;
	}
	if (ce->start > logical || ce->start + ce->size < logical) {
		fprintf(stderr, "Invalid mapping for %llu-%llu, got "
			"%llu-%llu\n", (unsigned long long)logical,
			(unsigned long long)logical+len,
			(unsigned long long)ce->start,
			(unsigned long long)ce->start + ce->size);
		return 1;
	}
	map = container_of(ce, struct map_lookup, ce);

	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
		ret = map->num_stripes;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
		ret = 3;
	else
		ret = 1;
	return ret;
}

int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
		  u64 *size, u64 type)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 cur = *logical;

	ce = search_cache_extent(&map_tree->cache_tree, cur);

	while (ce) {
		/*
		 * only jump to next bg if our cur is not 0
		 * As the initial logical for btrfs_next_bg() is 0, and
		 * if we jump to next bg, we skipped a valid bg.
		 */
		if (cur) {
			ce = next_cache_extent(ce);
			if (!ce)
				return -ENOENT;
		}

		cur = ce->start;
		map = container_of(ce, struct map_lookup, ce);
		if (map->type & type) {
			*logical = ce->start;
			*size = ce->size;
			return 0;
		}
		if (!cur)
			ce = next_cache_extent(ce);
	}

	return -ENOENT;
}

static inline int parity_smaller(u64 a, u64 b)
{
	return a > b;
}

/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
{
	struct btrfs_bio_stripe s;
	int i;
	u64 l;
	int again = 1;

	while (again) {
		again = 0;
		for (i = 0; i < bbio->num_stripes - 1; i++) {
			if (parity_smaller(raid_map[i], raid_map[i+1])) {
				s = bbio->stripes[i];
				l = raid_map[i];
				bbio->stripes[i] = bbio->stripes[i+1];
				raid_map[i] = raid_map[i+1];
				bbio->stripes[i+1] = s;
				raid_map[i+1] = l;
				again = 1;
			}
		}
	}
}

int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
		      u64 logical, u64 *length, u64 *type,
		      struct btrfs_multi_bio **multi_ret, int mirror_num,
		      u64 **raid_map_ret)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 *raid_map = NULL;
	int stripe_nr;
	int stripes_allocated = 8;
	int stripes_required = 1;
	int stripe_index;
	int i;
	struct btrfs_multi_bio *multi = NULL;

	if (multi_ret && rw == READ) {
		stripes_allocated = 1;
	}
again:
	ce = search_cache_extent(&map_tree->cache_tree, logical);
	if (!ce) {
		kfree(multi);
		*length = (u64)-1;
		return -ENOENT;
	}
	if (ce->start > logical) {
		kfree(multi);
		*length = ce->start - logical;
		return -ENOENT;
	}

	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
	}
	map = container_of(ce, struct map_lookup, ce);
	offset = logical - ce->start;

	if (rw == WRITE) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_RAID1C3 |
				 BTRFS_BLOCK_GROUP_RAID1C4 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
		}
	}
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
	    && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
		    /* RAID[56] write or recovery. Return all stripes */
		    stripes_required = map->num_stripes;

		    /* Only allocate the map if we've already got a large enough multi_ret */
		    if (stripes_allocated >= stripes_required) {
			    raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
			    if (!raid_map) {
				    kfree(multi);
				    return -ENOMEM;
			    }
		    }
	}

	/* if our multi bio struct is too small, back off and try again */
	if (multi_ret && stripes_allocated < stripes_required) {
		stripes_allocated = stripes_required;
		kfree(multi);
		multi = NULL;
		goto again;
	}
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = stripe_nr / map->stripe_len;

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
			 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
			 BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, ce->size - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = ce->size - offset;
	}

	if (!multi_ret)
		goto out;

	multi->num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 |
			 BTRFS_BLOCK_GROUP_RAID1C4)) {
		if (rw == WRITE)
			multi->num_stripes = map->num_stripes;
		else if (mirror_num)
			stripe_index = mirror_num - 1;
		else
			stripe_index = stripe_nr % map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = stripe_nr % factor;
		stripe_index *= map->sub_stripes;

		if (rw == WRITE)
			multi->num_stripes = map->sub_stripes;
		else if (mirror_num)
			stripe_index += mirror_num - 1;

		stripe_nr = stripe_nr / factor;
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		if (rw == WRITE)
			multi->num_stripes = map->num_stripes;
		else if (mirror_num)
			stripe_index = mirror_num - 1;
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {

		if (raid_map) {
			int rot;
			u64 tmp;
			u64 raid56_full_stripe_start;
			u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;

			/*
			 * align the start of our data stripe in the logical
			 * address space
			 */
			raid56_full_stripe_start = offset / full_stripe_len;
			raid56_full_stripe_start *= full_stripe_len;

			/* get the data stripe number */
			stripe_nr = raid56_full_stripe_start / map->stripe_len;
			stripe_nr = stripe_nr / nr_data_stripes(map);

			/* Work out the disk rotation on this stripe-set */
			rot = stripe_nr % map->num_stripes;

			/* Fill in the logical address of each stripe */
			tmp = stripe_nr * nr_data_stripes(map);

			for (i = 0; i < nr_data_stripes(map); i++)
				raid_map[(i+rot) % map->num_stripes] =
					ce->start + (tmp + i) * map->stripe_len;

			raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
				raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
			multi->num_stripes = map->num_stripes;
		} else {
			stripe_index = stripe_nr % nr_data_stripes(map);
			stripe_nr = stripe_nr / nr_data_stripes(map);

			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
			if (mirror_num > 1)
				stripe_index = nr_data_stripes(map) + mirror_num - 2;

			/* We distribute the parity blocks across stripes */
			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
		}
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = stripe_nr % map->num_stripes;
		stripe_nr = stripe_nr / map->num_stripes;
	}
	BUG_ON(stripe_index >= map->num_stripes);

	for (i = 0; i < multi->num_stripes; i++) {
		multi->stripes[i].physical =
			map->stripes[stripe_index].physical + stripe_offset +
			stripe_nr * map->stripe_len;
		multi->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
	*multi_ret = multi;

	if (type)
		*type = map->type;

	if (raid_map) {
		sort_parity_stripes(multi, raid_map);
		*raid_map_ret = raid_map;
	}
out:
	return 0;
}

int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
		    u64 logical, u64 *length,
		    struct btrfs_multi_bio **multi_ret, int mirror_num,
		    u64 **raid_map_ret)
{
	return __btrfs_map_block(fs_info, rw, logical, length, NULL,
				 multi_ret, mirror_num, raid_map_ret);
}